We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Two PARP Family Enzymes Cross-Regulate Macrophage Activation

By LabMedica International staff writers
Posted on 09 Nov 2016
Print article
Image: Immunofluorescence staining for PARP9 (red) and PARP14 (green) with nuclei shown in blue (Photo courtesy of Dr. Masanori Aikawa, Brigham and Women\'s Hospital).
Image: Immunofluorescence staining for PARP9 (red) and PARP14 (green) with nuclei shown in blue (Photo courtesy of Dr. Masanori Aikawa, Brigham and Women\'s Hospital).
Two of the PARP (poly(ADP-ribose) polymerase) family of enzymes have been identified as being key regulators of the type of macrophage activation that has been linked to development of atherosclerosis.

PARP enzymes are essential in a number of cellular functions, including expression of inflammatory genes. This protein is found in the nucleus of cells where its primary function is to detect and signal single-strand DNA breaks (SSB) to the enzyme mechanisms involved in SSB repair. PARP activation is an immediate cellular response to metabolic, chemical, or radiation-induced DNA SSB damage. Once PARP detects a SSB, it binds to the DNA, and, after a structural change, begins the synthesis of a poly (ADP-ribose) (PAR) chain as a signal for the other DNA-repairing enzymes. After completing the repair, the PAR chains are degraded via poly (ADP-ribose) glycohydrolase (PARG).

Investigators at Brigham and Women's Hospital (Boston, MA, USA) employed advanced proteomic techniques to screen a large number of molecules for their effect on macrophage activation. They reported in the October 31, 2016, online edition of the journal Nature Communications that two members of the PARP family, PARP9 and PARP14, were regulators of macrophage activation, which has been linked to arterial disease by systems biology.

In primary macrophages, PARP9 and PARP14 had opposing roles in macrophage activation. PARP14 silencing induced pro-inflammatory genes and STAT1 phosphorylation in M(interferon-gamma) cells, whereas it suppressed anti-inflammatory gene expression and STAT6 phosphorylation in M(IL-4) cells. PARP9 silencing suppressed pro-inflammatory genes and STAT1 phosphorylation in M(interferon-gamma) cells. PARP14 induced ADP-ribosylation of STAT1, which was suppressed by PARP9. These findings suggested that PARP9 and PARP14 cross-regulated macrophage activation.

"Macrophage activation plays a role in not only vascular disorders but also various inflammatory and autoimmune diseases," said senior author Dr. Masanori Aikawa, director of the center for interdisciplinary cardiovascular sciences at Brigham and Women's Hospital. "These results could provide important information about the mechanisms of these diseases and help to develop much needed new therapeutics."

Related Links:
Brigham and Women's Hospital


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.