We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Flufenamic Acid Slows Spread of Bladder Cancer in Mouse Model

By LabMedica International staff writers
Posted on 26 Oct 2016
The enzyme aldo-keto reductase 1C1, which could be suppressed by the anti-cold drug flufenamic acid, was found to be highly active in metastatic human bladder cancer and represents a potent molecular target for treating the disease.

In searching for new approaches for treating bladder cancer, investigators at Hokkaido University (Japan) found that the metabolic enzyme aldo-keto reductase 1C1 (AKR1C1) played an essential role in cancer invasion/metastasis and chemoresistance. More...


This determination was made by using a mouse xenograft model system. In this system human bladder cancer cells were labeled with the gene for the enzyme luciferase and then inoculated into mice. The resulting cancer cells could be traced by following the spread of the luciferase. After 45 days of growth, the primary bladder xenografts generated metastatic tumors that were detected in the lungs, liver, and bone.

The investigators used microarray analysis of more than 20,000 genes to establish that there was a three- to 25-fold increase in the activity of the metabolic enzyme aldo-keto reductase 1C1 (AKR1C1) in the tumor cells. They also found high levels of AKR1C1 in metastatic tumors removed from 25 cancer patients, proving that the phenomena discovered in the mice also occur in the human body.

The investigators also reported in the October 4, 2016, online edition of the journal Scientific Reports that an inflammatory cytokine, interleukin-1beta, increased AKR1C1 in bladder cancer cell lines. On the other hand, the non-steroidal anti-inflammatory drug, flufenamic acid, antagonized AKR1C1 and decreased the cisplatin-resistance and invasion potential of metastatic bladder cancer.

"This latest research could pave the way for medical institutions to use flufenamic acid -a much cheaper cold drug- which has unexpectedly been proven to be effective at fighting cancers," said senior author Dr. Shinya Tanaka, professor of cancer pathology at Hokkaido University.

Related Links:
Hokkaido University



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
Laboratory Software
ArtelWare
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.