Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Critical Final Step in Parthanatos Pathway Identified

By LabMedica International staff writers
Posted on 18 Oct 2016
A team of neurological disease researchers has identified the enzyme responsible for the last link in a chain of molecular steps that constitutes the cell death pathway called parthanatos.

Parthanatos is a form of programmed cell death that is distinct from other cell death processes such as necrosis and apoptosis. More...
While necrosis is caused by acute cell injury resulting in traumatic cell death, and apoptosis is a highly controlled process signaled by apoptotic intracellular signals, parthanatos is caused by the accumulation of PAR (Poly(ADP-ribose)) and the nuclear translocation of apoptosis-inducing factor (AIF) from mitochondria. Parthanatos is also known as PARP-1 dependent cell death. The PARP-1 (Poly(ADP-ribose) polymerase-1) enzyme mediates parthanatos under circumstances in which it becomes over-activated in response to extreme genomic stress and synthesizes PAR, which causes nuclear translocation of AIF. Parthanatos is involved in several well-known diseases including Parkinson’s disease, stroke, heart attack, and diabetes.

Investigators at Johns Hopkins University (Baltimore, MD, USA) reported in the October 7, 2016, issue of the journal Science that they had used two sequential unbiased screens, including a human protein array and a small interfering RNA screen to discover that macrophage migration inhibitory factor (MIF) bound AIF and was required for parthanatos. In the presence of magnesium or calcium ions, MIF possessed both 3′ exonuclease and endonuclease activity. It bound to 5′ unpaired bases of single-stranded DNA with stem loop structure and cleaved its 3′ unpaired bases. These nuclease activities allowed MIF to cleave genomic DNA into large fragments.

Depletion of MIF markedly reduced cell death induced by N-methyl-d-aspartate (NMDA) receptor–activated glutamate toxicity in primary neuronal cultures as well as DNA damage caused by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) or focal stroke in mice. Mutating key amino acid residues in the nuclease domain of MIF eliminated its nuclease activity and prevented parthanatos. In addition, disrupting the AIF and MIF interaction prevented the translocation of MIF from the cytosol to the nucleus and protected against parthanatos. . Therefore, targeting MIF nuclease activity may offer an important therapeutic opportunity for a variety of disorders with excessive PARP-1 activation.

"We found that AIF binds to MIF and carries it into the nucleus, where MIF chops up DNA," said senior author Dr. Ted Dawson, director of the institute for cell engineering at Johns Hopkins University. "We think that is the final execution step in parthanatos. I cannot overemphasize what an important form of cell death it is; it plays a role in almost all forms of cellular injury. We are interested in finding out whether MIF is also involved in Parkinson's, Alzheimer's, and other neurodegenerative diseases. If so, and if an inhibitor of MIF proves successful in testing, it could have implications for treating many conditions."

Related Links:
Johns Hopkins University


New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Collection and Transport System
PurSafe Plus®
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
New
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The study highlights the potential of cCAFs as a biomarker for early diagnosis and prognosis (H J Woo et al., Analytical Chemistry (2025). DOI: 10.1021/acs.analchem.5c02154)

Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy

Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.