We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Reactivation of p53 Shrinks Tumors in Mouse Model

By LabMedica International staff writers
Posted on 27 Sep 2016
Blocking a protein that inhibits lysine acetylation reversed the inactivation of the p53 protein and resulted in shrinkage of tumors in a mouse xenograft model.

Most cancers fail to propagate unless the p53 gene is inactivated through mutation or if the p53 protein becomes inactivated. More...
Investigators at the Columbia University Medical Center (New York, NY, USA) looked for proteins involved in inhibition of p53 and of ways to counter their effect.

Toward this end, they used a proteomic screen that identified the oncoprotein SET as a major cellular factor whose binding with p53 was dependent on C-terminal domain acetylation status. Acetylation of the C-terminal domain (CTD) of p53 was an early example of non-histone protein acetylation and its precise role has remained unclear.

The protein encoded by the SET gene inhibits acetylation of nucleosomes, especially histone H4, by histone acetylases (HAT). This inhibition is most likely accomplished by masking histone lysines from being acetylated, and the consequence is to silence HAT-dependent transcription. The encoded protein is part of a complex localized to the endoplasmic reticulum but is found in the nucleus and inhibits apoptosis following attack by cytotoxic T lymphocytes.

The investigators reported in the September 14, 2016, online edition of the journal Nature that SET profoundly inhibited p53 transcriptional activity in unstressed cells, but that SET-mediated repression was abolished by stress-induced acetylation of p53 CTD. Moreover, loss of the interaction with SET activated p53, resulting in tumor regression in mouse xenograft models.

Senior author Dr. Wei Gu, professor of pathology and cell biology at the Columbia University Medical College, said, “In the presence of SET, tumors grow much bigger and faster, demonstrating that the p53-SET interaction plays a key role in regulating p53-mediated tumor suppression. Therefore, targeting SET by small molecules or chemical compounds in future may serve as a potential therapeutic strategy for those tumors containing wild-type p53.”

Related Links:
Columbia University Medical Center


New
Gold Member
Genetic Type 1 Diabetes Risk Test
T1D GRS Array
POC Helicobacter Pylori Test Kit
Hepy Urease Test
ESR Analyzer
TEST1 2.0
Gold Member
Hybrid Pipette
SWITCH
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.