Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Advanced Gene Editing Technology Enables RNA Tracking in Living Cells

By LabMedica International staff writers
Posted on 30 Mar 2016
Genomics researchers have used a modified version of the CRISPR/Cas9 gene editing technique to track the movement of RNA in living cells.

Defective RNA transport has been linked to a number of conditions ranging from autism to cancer, and researchers have sought methods to measure RNA movement to facilitate development of treatments for these conditions.

CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. More...
Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs. The CRISPR/Cas complex comprises a prokaryotic immune system that confers resistance to foreign genetic elements such as plasmids and phages and provides a form of acquired immunity. Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 protein and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR-Cas9 system is composed of two parts: The Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides (CRISPRs) that shepherd the Cas9 protein to the target gene on a DNA strand.

CRISPR systems are phylogenetically grouped into five types (types I to V). In addition to the CRISPR/Cas9 complex, CRISPR-associated Cas1 and Cas2 proteins have been shown to enable adaptation to new viral threats in type I and II CRISPR systems by the acquisition of short segments of DNA (spacers) from invasive elements. In several type III CRISPR systems, Cas1 is naturally fused to a reverse transcriptase (RT) enzyme. Such an arrangement suggested the possibility of a spacer integration mechanism involving Cas1 integrase activity and the reverse transcription of RNA to DNA.

In the current study, investigators at the University of California, San Diego (USA) demonstrated that nuclease-inactive Streptococcus pyogenes CRISPR/Cas9 could bind RNA in a nucleic-acid-programmed manner that allowed the endogenous tracking of RNA in living cells. The investigators focused on the RNA that encoded the proteins ACTB, TFRC, and CCNA2. Results published in the March 17, 2016, online edition of the journal Cell showed how a complex of Cas9 fused to a fluorescent protein marker revealed the movement of RNA into stress granules, a cluster of proteins and RNAs that form in a cell's cytosol during periods of cellular stress.

"This work is the first example, to our knowledge, of targeting RNA in living cells with CRISPR-Cas9," said senior author Dr. Gene Yeo, associate professor of cellular and molecular medicine at the University of California, San Diego. "Our current work focuses on tracking the movement of RNA inside the cell, but future developments could enable researchers to measure other RNA features or advance therapeutic approaches to correct disease-causing RNA behaviors."

Related Links:

University of California, San Diego



New
Gold Member
Hybrid Pipette
SWITCH
Collection and Transport System
PurSafe Plus®
New
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The enhanced collaboration builds upon the successful launch of the AmplideX Nanopore Carrier Plus Kit in March 2025 (Photo courtesy of Bio-Techne)

Bio-Techne and Oxford Nanopore to Accelerate Development of Genetics Portfolio

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded its agreement with Oxford Nanopore Technologies (Oxford, UK) to broaden Bio-Techne's ability to develop a portfolio of genetic products on Oxford... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.