We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Developmental Biologists Locate Source of Liver Stem Cells

By LabMedica International staff writers
Posted on 18 Aug 2015
Print article
Image: Cross-section of the human liver (Photo courtesy of Wikimedia Commons).
Image: Cross-section of the human liver (Photo courtesy of Wikimedia Commons).
Researchers have identified a stem cell line that is responsible for the generation of liver cells (hepatocytes), which are constantly required to maintain the health of the organ.

Working with mice, investigators at Stanford University (Palo Alto, CA, USA) traced the lineage of hepatocytes by determining expression of the Wnt-responsive gene Axin2 (axis inhibition protein 2). The WNT gene family consists of structurally related genes that encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis.

The investigators reported in the August 5, 2015, online edition of the journal Nature that they had identified a population of proliferating and self-renewing cells adjacent to the central vein in the liver lobule. These pericentral cells expressed the early liver progenitor marker Tbx3 (T-box 3), were diploid, and thereby differed from mature hepatocytes, which are mostly polyploid. The descendants of pericentral cells differentiated into Tbx3-negative, polyploid hepatocytes, and could replace all hepatocytes along the liver lobule during homeostatic renewal. The population of liver stem cells was maintained by Wnt signals provided by endothelial cells in the adjacent central vein.

"We have solved a very old problem," said senior author Dr. Roel Nusse, professor of developmental biology at Stanford University. "We have shown that like other tissues that need to replace lost cells, the liver has stem cells that both proliferate and give rise to mature cells, even in the absence of injury or disease. Differentiated hepatocytes have amplified their chromosomes. That is, the cells have more than the usual two copies of every chromosome. This enables the cells to make more proteins, but it really compromises their ability to divide."

Related Links:

Stanford University


Gold Supplier
Rheumatoid Factors (RF) Test
Rheumatoid Factors (RF)
New
Hepatitis B IgM ELISA
Anti-HBclgM
New
Real-Time PCR System
X9
New
M. Tuberculosis Indirect Test
LIAISON QuantiFERON-TB Gold Plus

Print article

Channels

Molecular Diagnostics

view channel
Image: Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers (Photo courtesy of The Jackson Laboratory for Genomic Medicine)

Method Enables Targeted Profiling of Human Extrachromosomal DNA

Oncogene amplification is a key cancer-driving mechanism and frequently occurs on circular extrachromosomal DNA (ecDNA). ecDNA oncogene amplifications are present in half of human cancer types and up to... Read more

Microbiology

view channel
Image: Trichinella sp. found in muscle tissue (Photo courtesy of McGill University)

Laboratory Features of Trichinellosis and Eosinophilia Threshold Determined

Trichinella nativa is a nematode worm, one of the species of the genus Trichinella, found in arctic and subarctic regions. It is highly pathogenic and has a high resistance to freezing. It is encapsulated,... Read more

Pathology

view channel
Image: A deep-learning system looks at breast cancer scans better than a human ever could (Photo courtesy of Pexels)

AI Pathological Analysis System More Accurate than Humans in Reading Digital Biopsy Images

One in nine women in the developed world will be diagnosed with breast cancer at some point in her life. The prevalence of breast cancer is increasing, an effect caused in part by the modern lifestyle... Read more

Industry

view channel
Image: With Cell IDx’s acquisition, Leica Biosystems will be moving its multiplexing menu forward (Photo courtesy of Leica Biosystems)

Leica Biosystems Acquires Cell IDx, Expanding Offerings in Multiplexed Tissue Profiling

Leica Biosystems, a technology leader in automated staining and brightfield and fluorescent imaging (Nussloch, Germany), has acquired Cell IDx, Inc. (San Diego, CA, USA), which provides multiplex staining... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.