We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Developmental Biologists Locate Source of Liver Stem Cells

By LabMedica International staff writers
Posted on 18 Aug 2015
Researchers have identified a stem cell line that is responsible for the generation of liver cells (hepatocytes), which are constantly required to maintain the health of the organ.

Working with mice, investigators at Stanford University (Palo Alto, CA, USA) traced the lineage of hepatocytes by determining expression of the Wnt-responsive gene Axin2 (axis inhibition protein 2). More...
The WNT gene family consists of structurally related genes that encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis.

The investigators reported in the August 5, 2015, online edition of the journal Nature that they had identified a population of proliferating and self-renewing cells adjacent to the central vein in the liver lobule. These pericentral cells expressed the early liver progenitor marker Tbx3 (T-box 3), were diploid, and thereby differed from mature hepatocytes, which are mostly polyploid. The descendants of pericentral cells differentiated into Tbx3-negative, polyploid hepatocytes, and could replace all hepatocytes along the liver lobule during homeostatic renewal. The population of liver stem cells was maintained by Wnt signals provided by endothelial cells in the adjacent central vein.

"We have solved a very old problem," said senior author Dr. Roel Nusse, professor of developmental biology at Stanford University. "We have shown that like other tissues that need to replace lost cells, the liver has stem cells that both proliferate and give rise to mature cells, even in the absence of injury or disease. Differentiated hepatocytes have amplified their chromosomes. That is, the cells have more than the usual two copies of every chromosome. This enables the cells to make more proteins, but it really compromises their ability to divide."

Related Links:

Stanford University



Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Silver Member
PCR Plates
Diamond Shell PCR Plates
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.