We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Developmental Biologists Locate Source of Liver Stem Cells

By LabMedica International staff writers
Posted on 18 Aug 2015
Print article
Image: Cross-section of the human liver (Photo courtesy of Wikimedia Commons).
Image: Cross-section of the human liver (Photo courtesy of Wikimedia Commons).
Researchers have identified a stem cell line that is responsible for the generation of liver cells (hepatocytes), which are constantly required to maintain the health of the organ.

Working with mice, investigators at Stanford University (Palo Alto, CA, USA) traced the lineage of hepatocytes by determining expression of the Wnt-responsive gene Axin2 (axis inhibition protein 2). The WNT gene family consists of structurally related genes that encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis.

The investigators reported in the August 5, 2015, online edition of the journal Nature that they had identified a population of proliferating and self-renewing cells adjacent to the central vein in the liver lobule. These pericentral cells expressed the early liver progenitor marker Tbx3 (T-box 3), were diploid, and thereby differed from mature hepatocytes, which are mostly polyploid. The descendants of pericentral cells differentiated into Tbx3-negative, polyploid hepatocytes, and could replace all hepatocytes along the liver lobule during homeostatic renewal. The population of liver stem cells was maintained by Wnt signals provided by endothelial cells in the adjacent central vein.

"We have solved a very old problem," said senior author Dr. Roel Nusse, professor of developmental biology at Stanford University. "We have shown that like other tissues that need to replace lost cells, the liver has stem cells that both proliferate and give rise to mature cells, even in the absence of injury or disease. Differentiated hepatocytes have amplified their chromosomes. That is, the cells have more than the usual two copies of every chromosome. This enables the cells to make more proteins, but it really compromises their ability to divide."

Related Links:

Stanford University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The utilization of liquid biopsies in cancer research is a rapidly developing field (Photo courtesy of Lightspring/Shutterstock)

Blood Samples Enhance B-Cell Lymphoma Diagnostics and Prognosis

B-cell lymphoma is the predominant form of cancer affecting the lymphatic system, with about 30% of patients with aggressive forms of this disease experiencing relapse. Currently, the disease’s risk assessment... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Sampler device could revolutionize sample collection for diagnostic tests (Photo courtesy of ReadyGo Diagnostics)

First of Its Kind Universal Tool to Revolutionize Sample Collection for Diagnostic Tests

The COVID pandemic has dramatically reshaped the perception of diagnostics. Post the pandemic, a groundbreaking device that combines sample collection and processing into a single, easy-to-use disposable... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.