We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Holographic Haptic Shapes Realized Using Ultrasound

By LabMedica International staff writers
Posted on 17 Dec 2014
Technology has quickly changed recently with touch feedback, known as haptics, being used in rehabilitation, entertainment, and even surgical training. More...
New research, using ultrasound, has created an invisible three-dimensional (3-D) haptic shape that can be both seen and felt.

The study’s findings, published in the December 2014 issue of ACM Transactions on Graphics, and which was presented at the SIGGRAPH Asia 2014 Conference, held December 3–6, in Shenzhen (China), demonstrated how a holographic technology has been created to produce 3-D shapes that can be felt in mid-air.

The research, led by Dr. Ben Long and colleagues Prof. Sriram Subramanian, Sue Ann Seah, and Tom Carter from the University of Bristol’s (UK) department of computer science, could change the way 3D shapes are used. The new technology could enable surgeons to study a computed tomography (CT) scan by enabling them to feel a disease, such as a tumor, using haptic feedback.

The technology uses ultrasound, which is focused onto hands above the device and that can be felt. By focusing complicated patterns of ultrasound, the air disturbances can be seen as floating 3-D shapes. The investigators have visually demonstrated the ultrasound patterns by directing the device at a thin layer of oil so that the depressions in the surface can be seen as spots when lit by a lamp. The system generates an invisible 3-D shape that can be added to 3-D displays to create something that can be seen and felt. The researchers have also shown that users can match a picture of a 3-D shape to the shape created by the system.

Dr. Ben Long, research assistant from the Bristol Interaction and Graphics (BIG) group in the department of computer science, said, “Touchable holograms, immersive virtual reality that you can feel and complex touchable controls in free space, are all possible ways of using this system. In the future, people could feel holograms of objects that would not otherwise be touchable, such as feeling the differences between materials in a CT scan or understanding the shapes of artefacts in a museum.”

Related Links:

University of Bristol



New
Gold Member
Hematology Analyzer
Medonic M32B
Portable Electronic Pipette
Mini 96
New
Automatic Chemiluminescence Immunoassay Analyzer
Shine i2000
New
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Over 100 new epigenetic biomarkers may help predict cardiovascular disease risk (Photo courtesy of 123RF)

Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk

Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.