We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Loss of Regulatory Enzyme Spurs Kidney Cancer Growth

By LabMedica International staff writers
Posted on 31 Jul 2014
Cancer researchers have found that the enzyme fructose-1,6-bisphosphatase 1 (FBP1) is missing or inactive in the clear cell renal cell carcinoma (ccRCC) form of kidney cancer, a lack that gives the cancer cells a metabolic advantage over surrounding normal tissue.

FBP1 is a gluconeogenesis regulatory enzyme that catalyzes the hydrolysis of fructose1,6-bisphosphate to fructose 6-phosphate and inorganic phosphate. More...
Fructose-1,6-diphosphatase deficiency is associated with hypoglycemia and metabolic acidosis.

Investigators at the University of Pennsylvania (Philadelphia, USA) have been working with a mouse ccRCC model. Previous studies had shown that kidney tumors of this type were characterized by elevated glycogen levels and fat deposition. Development of these characteristics was associated with elevated expression of hypoxia inducible factors (HIFs) and mutations in the von Hippel-Lindau (VHL) encoded protein, pVHL, which occurs in 90% of ccRCC tumors.

The VHL protein (pVHL) is involved in the regulation of hypoxia inducible factor 1 alpha (HIF1alpha). This is a subunit of a heterodimeric transcription factor that at normal cellular oxygen levels is highly regulated. Under normal physiological conditions, pVHL recognizes and binds to HIF1alpha only when oxygen is present due to the post translational hydroxylation of two proline residues within the HIF1alpha protein. pVHL is an E3 ligase that ubiquitinates HIF1alpha and causes its degradation by the proteasome. In low oxygen conditions or in cases of VHL disease where the VHL gene is mutated, pVHL does not bind to HIF1alpha. This allows the subunit to dimerize with HIF1beta and activate the transcription of a number of genes, including vascular endothelial growth factor, platelet-derived growth factor B, erythropoietin, and genes involved in glucose uptake and metabolism.

In the current study, which was published in the July 20, 2014, online edition of the journal Nature, the investigators used an integrative approach comprising metabolomic profiling and metabolic gene set analysis to examine more than 600 kidney tumors from human patients. They determined that FBP1 was uniformly depleted in all of the ccRCC tumors examined. The human FBP1 locus was found to reside on chromosome 9q22, the loss of which was associated with poor prognosis for ccRCC patients.

FBP1 was found in the nucleus of normal cells, where it bound to HIF to modulate its effects on tumor growth. In cells lacking FBPI, rapidly growing tumor cells were found to produce energy up to 200 times faster than normal cells.

“This study is the first stop in this line of research for coming up with a personalized approach for people with clear cell renal cell carcinoma-related mutations,” said senior author Dr. Celeste Simon, professor of cell and developmental biology at the University of Pennsylvania. “Since FBP1 activity is also lost in liver cancer, which is quite prevalent, FBP1 depletion may be generally applicable to a number of human cancers.”

Related Links:
University of Pennsylvania



Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Rapid Molecular Testing Device
FlashDetect Flash10
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Researcher Fusun Can (at left) is developing a test for detecting both resistance and virulence in Klebsiella pneumoniae (Photo courtesy of Koç University)

Rapid Diagnostic Breakthrough Simultaneously Detects Resistance and Virulence in Klebsiella Pneumoniae

Antibiotic resistance is a steadily escalating threat to global healthcare, making common infections harder to treat and increasing the risk of severe complications. One of the most concerning pathogens... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.