We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




DNA Nanotechnology Strategy Puts Enzyme Catalysis Within Reach

By LabMedica International staff writers
Posted on 10 Jun 2014
Using molecules of DNA in an architectural scaffold, scientists have developed a three-dimensional (3D) synthetic enzyme cascade that mimics an important biochemical pathway that could prove important for future biomedical and energy applications. More...
In this latest research, the research team took up the challenge of mimicking enzymes outside the friendly confines of the cell. These enzymes speed up chemical reactions, used, for example, for the digestion of food into sugars and energy during human metabolism.

Arizona State University (ASU; Tempe, USA) scientists, working with colleagues at the University of Michigan (Ann Arbor, USA), have developed the technology for future biomedical and energy applications. The study’s findings were published online May 25, 2014, in the journal Nature Nanotechnology. Led by ASU Prof. Hao Yan, the research team included ASU Biodesign Institute researchers along with colleagues Prof. Nils Walter and postdoctoral fellow Alexander Johnson-Buck at the University of Michigan.

Researchers in the field of DNA nanotechnology, taking advantage of the binding properties of the chemical building blocks of DNA, twist and self-assemble DNA into ever-more imaginative two- and three-dimensional structures for medical, electronic and energy applications.

In the latest cutting-edge approach, the researcher attempted to mimic enzymes outside the friendly boundaries of the cell. These enzymes speed up chemical reactions, used in bodies for the digestion of food into sugars and energy during human metabolism, for example.

“We look to nature for inspiration to build human-made molecular systems that mimic the sophisticated nanoscale machineries developed in living biological systems, and we rationally design molecular nanoscaffolds to achieve biomimicry at the molecular level,” Prof. Yan said, who also directs the Center for Molecular Design and Biomimicry at the Biodesign Institute.

With enzymes, all moving parts must be tightly controlled and coordinated; otherwise the reaction will not work. The moving parts, which include molecules such as substrates and cofactors, all fit into a complex enzyme pocket just like a baseball into a glove. Once all the chemical parts have found their place in the pocket, the energetics that control the reaction become favorable, and swiftly make chemistry happen. Each enzyme releases its product, similar to a baton handed off in a relay race, to another enzyme to carry out the next phase in a biochemical pathway in the human body.

For the new study, the researchers chose a pair of universal enzymes, glucose-6 phosphate dehydrogenase (G6pDH) and malate dehydrogenase (MDH), that are important for biosynthesis—making fats, amino acids, and nucleic acids vital for all life. For instance, flaws found in the pathway are known to cause anemia in humans. “Dehydrogenase enzymes are particularly important since they supply most of the energy of a cell,” said Prof. Walter. “Work with these enzymes could lead to future applications in green energy production such as fuel cells using biomaterials for fuel.”

In the pathway, G6pDH uses the glucose sugar substrate and a cofactor called NAD to peel off hydrogen atoms from glucose and transfer to the next enzyme, MDH, to continue and produce malic acid and generate NADH in the process, which is used for as a key cofactor for biosynthesis.

Re-creating this enzyme pair in the test tube and having it work outside the cell is a big hurdle for DNA nanotechnology. To meet the challenge, they first constructed a DNA scaffold that looks like several paper towel rolls glued together. Using a computer program, they were able to engineer the chemical building blocks of the DNA sequence so that the scaffold would self-assemble. Next, the two enzymes were attached to the ends of the DNA tubes. In the middle of the DNA scaffold, they attached a single strand of DNA, with the NAD+ tethered to the end like a ball and string. Dr. Yan refers to this as a swinging arm, which is long, and flexible enough to rock back and forth between the enzymes.

Once the system was developed in vitro by heating up and cooling the DNA, which leads to self-assembly, the enzyme parts were added in. They confirmed the structure using a high-powered an atomic force microscope (AFM), which can see down to the nanoscale.

Similar to architects, the scientists first built a full-scale model so they could test and measure the spatial geometry and structures, including in their setup a tiny fluorescent dye attached to the swinging arm. If the reaction takes place, they can measure a red beacon signal that the dye gives off—but in this case, unlike a traffic signal, a red light means the reaction works. Next, they tried the enzyme system and found that it worked just the same as a cellular enzyme cascade. They also measured the effect when varying the distance between the swinging arm and the enzymes. They discovered that there was a perfect spot, at 7 nm, where the arm angle was parallel to the enzyme pair.

With a single swinging arm in the in vitro system working just like the cellular enzymes, the researchers added arms, assessing the limits of the system with up to four added arms. They were able to show that as each arm was added, the G6pDH could keep up to make even more product, while the MDH’s limit was two swinging arms. “Lining enzymes up along a designed assembly line like Henry Ford did for auto parts is particularly satisfying for someone living near the motor city Detroit [MI, USA],” said Prof. Walter.

The research also creates new strategies where biochemical pathways can be replicated outside the cell to develop biomedical applications such as detection methods for diagnostic platforms. “An even loftier and more valuable goal is to engineer highly programmed cascading enzyme pathways on DNA nanostructure platforms with control of input and output sequences. Achieving this goal would not only allow researchers to mimic the elegant enzyme cascades found in nature and attempt to understand their underlying mechanisms of action, but would facilitate the construction of artificial cascades that do not exist in nature,” said Prof. Yan.

Related Links:

Arizona State University
University of Michigan



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Portable Electronic Pipette
Mini 96
New
8-Channel Pipette
SAPPHIRE 20–300 µL
New
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Over 100 new epigenetic biomarkers may help predict cardiovascular disease risk (Photo courtesy of 123RF)

Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk

Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.