We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Mutation Causing Lesch-Nyhan Syndrome Linked to Other Neurological Disorders

By LabMedica International staff writers
Posted on 21 Oct 2013
Scientists have shown that gene expression errors impair the ability of stem cells to produce normal neurons, resulting instead in neurological disease. More...
They indicate that at least some distinctly different neurodevelopmental and neurodegenerative disorders share basic, causative defects.

A gene mutation that causes a rare but destructive neurological disorder known as Lesch-Nyhan syndrome could help explain the developmental and neuronal defects found in other, diverse neurological disorders such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. Lesch-Nyhan syndrome is caused by defects in the hypoxanthine guanine phosphoribosyltransferacgene (HPRT1), a gene that helps generate purine nucleotides, needed for DNA and RNA.

The findings, published in the October 9, 2013, issue of the journal PLOS ONE provide the first experimental picture of how gene expression errors impair the ability of stem cells to produce normal neurons, resulting instead in neurological disease. They indicate that at least some distinctly different neurodevelopmental and neurodegenerative disorders share basic, causative defects.

Mutations in the HPRT gene result in deficiencies in the HPRT enzyme, leading to defective expression of the neurotransmitter dopamine and subsequent abnormal neuron function. HPRT mutation is the specific cause of Lesch-Nyhan, an inherited neurodevelopmental disorder characterized by uncontrollable repetitive body movements, cognitive defects and compulsive self-mutilating behaviors.

They discovered that the cells do not develop normally. Instead, they differentiate from full-fledged neurons into cells that resemble and partially function as neurons, but also perform functions more typical of glial cells, a kind of supporting cell in the central nervous system. In addition, they noted that HPRT deficiency causes abnormal regulation of many cellular functions controlling important operational and reproduction mechanisms, DNA replication and repair and many metabolic processes.

The scientific team, headed by Theodore Friedmann, MD, professor of pediatrics at the University of California, San Diego School of Medicine (USA), says a gene mutation that causes a rare but destructive neurological disorder known as Lesch-Nyhan syndrome appears to explain the developmental and neuronal defects found in other, diverse neurological disorders like Alzheimer’s, Parkinson’s and Huntington’s diseases.

The scientists say that understanding defects in Lesch-Nyhan could help identify errant processes in other, more common neurological disorders, perhaps pointing the way to new kinds of therapies. Lesch-Nyhan syndrome is caused by defects in the hypoxanthine guanine phosphoribosyltransferacgene (HPRT1), a gene that is well-known for its essential tasks among them helping generate purine nucleotides–the building blocks of DNA and RNA.

“We believe that the neural aberrations of HPRT deficiency are the consequence of these combined, multisystem metabolic errors,” said Prof. Friedmann. “And since some of these aberrations are also found in other neurological disorders, we think they almost certainly play some role in causing the neurological abnormalities in diseases like Alzheimer’s, Parkinson’s, Huntington’s and possibly others. That makes them potential therapeutic targets for conditions that currently have limited or no treatments, let alone cures.”

Related Links:

University of California, San Diego School of Medicine



Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
Gold Member
Hematology System
Medonic M16C
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.