We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Blocking Microglial Proliferation Could Impede Development of Neurodegenerative Disorders

By LabMedica International staff writers
Posted on 06 Mar 2013
A recent paper outlined the molecular pathway that leads to the chronic inflammation of microglia cells that is characteristic of the brains of patients with neurodegenerative disorders such as Alzheimer's or Creutzfeldt-Jakob disease.

Microglia, which constitute about 20% of glial cells, are the resident macrophages of the brain and spinal cord, and thus act as the first and main form of active immune defense in the central nervous system (CNS). More...
Increased levels of CSF1R1 (colony stimulating factor 1 receptor) are found in microglia in Alzheimer's disease and after brain injuries. The increased receptor expression causes microglia to become more active.

Investigators at the University of Southampton (United Kingdom) studied the time course and regulation of microglial proliferation, using a mouse model of prion disease. They reported in the February 20, 2013, issue of the Journal of Neuroscience that the proliferation of resident microglial cells accounted for the expansion of the population during the development of the disease.

The pathway regulated by the activation of CSF1R and the transcription factors PU.1 (spleen focus forming virus (SFFV) proviral integration oncogene spi1) and C/EBPalpha (CCAAT/enhancer-binding protein alpha) were the molecular regulators of the proliferative response, correlating with the chronic human neurodegenerative conditions variant Creutzfeldt-Jakob disease and Alzheimer's disease.

Targeting the activity of CSF1R inhibited microglial proliferation and slowed neuronal damage and disease progression.

Senior author Dr. Diego Gomez-Nicola, a research fellow at the University of Southampton, said, "We have been able to identify that this molecular system is active in human Alzheimer's disease and variant Creutzfeldt-Jakob disease, pointing to this mechanism being universal for controlling microglial proliferation during neurodegeneration. By means of targeting CSF1R with selective inhibitors we have been able to delay the clinical symptoms of experimental prion disease, also preventing the loss of neurons."

"The understanding of microglial biology during neurodegenerative diseases is crucial for the development of potential therapeutic approaches to control the harmful inflammatory reaction," said Dr. Gomez-Nicola. "These potential interventions could modify or arrest neurodegenerative diseases like Alzheimer disease. The future potential outcomes of this line of research would be rapidly translated into the clinics of neuropathology, and would improve the quality of life of patients with these diseases."

Related Links:
University of Southampton



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
ESR Analyzer
TEST1 2.0
Gold Member
Hybrid Pipette
SWITCH
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Immunology

view channel
Image: The simple blood marker can predict which lymphoma patients will benefit most from CAR T-cell therapy (Photo courtesy of Shutterstock)

Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy

CAR T-cell therapy has transformed treatment for patients with relapsed or treatment-resistant non-Hodgkin lymphoma, but many patients eventually relapse despite an initial response. Clinicians currently... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.