We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Mechanical Stress May Induce Formation of Cancer Cells

By LabMedica International staff writers
Posted on 25 Jul 2012
Researchers have developed a novel technique for studying the forces that induce mistakes in chromosome distribution that have the potential to initiate growth of cancer cells.

In order to study mechanical effects that influence the outcome of cell division, investigators at the University of California, Los Angeles (USA) developed a novel microfluidic perfusion-culture system that allowed controllable variation in the level of cell confinement in a single axis allowing observation of cell growth and division at the single-cell level.

This novel culture platform allowed for both alterations in the geometry of the microenvironment, specifically the space in which the cell was allowed to grow and divide, as well as the elasticity of the substrate on which the cell was dividing. More...
By using the microfluidic device to compress the cells, the investigators minimized cell death due to lack of nutrients, as media was constantly perfused through the compression chamber. The device also allowed for facile imaging of cells, as they were in a single focal plane.

The investigators used this tool to study growth and division of single HeLa (human cervical carcinoma) cells. They reported in the June 25, 2012, online edition of the journal PLoS ONE that mechanically confined cell cycles resulted in stressed cell divisions that manifested as: (i) delayed mitosis, (ii) multidaughter mitosis events (from three up to five daughter cells), (iii) unevenly sized daughter cells, and (iv) induction of cell death. In the highest confined conditions, the frequency of divisions producing more than two progeny was increased 50-fold from unconfined environments, representing about one-half of all successful mitotic events. Most daughter cells resulting from multipolar divisions were viable after cytokinesis and were in some cases observed to re-fuse with neighboring cells post-cytokinesis.

“We hope that this platform will allow us to better understand how the 3-D mechanical environment may play a role in the progression of a benign tumor into a malignant tumor that kills," said senior author Dr. Dino Di Carlo, associate professor of bioengineering at the University of California, Los Angeles. “Even though cancer can arise from a set of precise mutations, the majority of malignant tumors possess aneuploid cells, and the reason for this is still an open question. Our new microfluidic platform offers a more reliable way for researchers to study how the unique tumor environment may contribute to aneuploidy.”

Related Links:
University of California, Los Angeles




Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Collection and Transport System
PurSafe Plus®
Alcohol Testing Device
Dräger Alcotest 7000
New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.