We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Mechanical Stress May Induce Formation of Cancer Cells

By LabMedica International staff writers
Posted on 25 Jul 2012
Researchers have developed a novel technique for studying the forces that induce mistakes in chromosome distribution that have the potential to initiate growth of cancer cells.

In order to study mechanical effects that influence the outcome of cell division, investigators at the University of California, Los Angeles (USA) developed a novel microfluidic perfusion-culture system that allowed controllable variation in the level of cell confinement in a single axis allowing observation of cell growth and division at the single-cell level.

This novel culture platform allowed for both alterations in the geometry of the microenvironment, specifically the space in which the cell was allowed to grow and divide, as well as the elasticity of the substrate on which the cell was dividing. More...
By using the microfluidic device to compress the cells, the investigators minimized cell death due to lack of nutrients, as media was constantly perfused through the compression chamber. The device also allowed for facile imaging of cells, as they were in a single focal plane.

The investigators used this tool to study growth and division of single HeLa (human cervical carcinoma) cells. They reported in the June 25, 2012, online edition of the journal PLoS ONE that mechanically confined cell cycles resulted in stressed cell divisions that manifested as: (i) delayed mitosis, (ii) multidaughter mitosis events (from three up to five daughter cells), (iii) unevenly sized daughter cells, and (iv) induction of cell death. In the highest confined conditions, the frequency of divisions producing more than two progeny was increased 50-fold from unconfined environments, representing about one-half of all successful mitotic events. Most daughter cells resulting from multipolar divisions were viable after cytokinesis and were in some cases observed to re-fuse with neighboring cells post-cytokinesis.

“We hope that this platform will allow us to better understand how the 3-D mechanical environment may play a role in the progression of a benign tumor into a malignant tumor that kills," said senior author Dr. Dino Di Carlo, associate professor of bioengineering at the University of California, Los Angeles. “Even though cancer can arise from a set of precise mutations, the majority of malignant tumors possess aneuploid cells, and the reason for this is still an open question. Our new microfluidic platform offers a more reliable way for researchers to study how the unique tumor environment may contribute to aneuploidy.”

Related Links:
University of California, Los Angeles




New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Silver Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
New
PSA Assay
CanAg PSA EIA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.