We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Normal Brain Electrical Activity Protects Nerves from Huntington's Disease Peptides

By LabMedica International staff writers
Posted on 02 Dec 2009
The normal level of brain electrical activity (normal synaptic activity) protects nerve cells from the affect of the toxic peptides that characterize Huntington's disease.

Huntington's disease is a neurodegenerative disorder caused by a mutation in the gene that encodes for the huntingtin (Htt) protein. More...
The mutated gene adds from one to many dozens of extra glutamine molecules to Htt. Incomplete breakdown of the enlarged protein results in the buildup of toxic, misfolded peptides that destroy cells in the nervous system.

Working with a mouse model of Huntington's disease, investigators at the Burnham Institute for Medical Research (La Jolla, CA, USA) examined the part played by brain electrical activity on the interaction between nerve cells and toxic Htt peptides.

They reported in the November 15, 2009, online edition of the journal Nature Medicine that normal synaptic receptor activity made nerve cells more resistant to Htt peptides. In contrast, excessive extrasynaptic electrical activity contributed to increased nerve cell death.

Treatment of mice that had been transfected with Htt peptides with low doses of the drug memantine, which is used to treat Alzheimer's disease, was found to effectively protect the animals' nerve cells. This was due to the action of the drug in reducing excessive NMDA-type glutamate receptor activity (synaptic N-methyl-D-aspartate-type glutamate receptor activity), which prevented the expression of excessive extasynaptic activity. However, high-doses of memantine stimulated disease progression, as it also blocked lower level protective synaptic NMDA receptor activity.

"Chronic neurodegenerative diseases like Huntington's, Alzheimer's and Parkinson's are all related to protein misfolding," said senior author Dr. Stuart A. Lipton, professor of neurosciences at the Burnham Institute. "We show here, for the first time, that electrical activity controls protein folding, and if you have a drug that can adjust the electrical activity to the correct levels, you can protect against misfolding. Also, this verifies that appropriate electrical activity is protective, supporting the ‘use it or lose it theory' of brain activity at the molecular level. For example, this finding may explain why epidemiologists have found that "using" your brain by performing crossword puzzles and other games can stave off cognitive decline in diseases like Alzheimer's."

Related Links:
Burnham Institute for Medical Research



New
Gold Member
Collection and Transport System
PurSafe Plus®
Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Rapid Molecular Testing Device
FlashDetect Flash10
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Sickle cell disease patients with higher levels of RMVs, AMVs, and EMVs were found to have more severe disease (Photo courtesy of Adobe Stock)

Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients

Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more

Microbiology

view channel
Image: The rapid diagnostic test is being piloted across three UK hospitals (Photo courtesy of Imperial College Healthcare)

15-Minute Blood Test Diagnoses Life-Threatening Infections in Children

Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.