Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Quantitative High-Throughput Screening Yields Potential Alzheimer's Disease Drugs

By LabMedica International staff writers
Posted on 21 Aug 2009
The search for small molecules to prevent the formation of the tau protein clots that characterize neurodegenerative disorders such as Alzheimer's disease has borne fruit with discovery of a new class of molecules called aminothienopyridazines (ATPZs).

Tau proteins are microtubule-associated proteins that are abundant in neurons in the central nervous system and are less common elsewhere. More...
They interact with tubulin to stabilize microtubules and promote tubulin assembly into microtubules.

Phosphorylation of tau is regulated by a host of kinases including PKN, a serine/threonine kinase. When PKN is activated, it phosphorylates tau, resulting in disruption of microtubule organization. Hyperphosphorylation of the tau protein can result in the self-assembly of tangles of paired helical filaments and straight filaments, which are involved in the pathogenesis of Alzheimer's disease and other "tauopathies”.

To find useful tau inhibitors investigators at the University of Pennsylvania School of Medicine (Philadelphia, USA) and the [U.S.] National Institutes of Health (Bethesda, MD, USA) conducted quantitative high-throughput screening assays of more than 292,000 compounds housed in the National Institutes of Health's Chemical Genomics Center.

Results published in the August 18, 2009, issue of the journal Biochemistry revealed that 285 compounds were of potential interest. Of these, the investigators focused on the ATPZs, since they best fit the criteria for potential drug candidacy such as proper size, desirable chemical properties, specificity for the tau protein, and a predicted likelihood of crossing the blood-brain barrier. Further characterization of representative ATPZ compounds showed they did not interfere with tau-mediated microtubule assembly, and they were significantly more effective at preventing the fibrillization of tau than other drugs tested.

"While we are excited about the discovery of this new series of tau fibril inhibitors, we are still a long ways from turning these early lead compounds into drugs,” cautioned corresponding author Dr. Kurt R. Brunden, professor of neurodegenerative diseases at the University of Pennsylvania School of Medicine. "However, we believe that certain of our ATPZ compounds will be very useful in allowing us to gain a better understanding of the consequences of inhibiting tau fibril formation in transgenic mouse models of Alzheimer's disease.”

Related Links:
University of Pennsylvania School of Medicine
National Institutes of Health



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.