We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Streamlined Assay Improves Prenatal Detection of Alpha-Thalassemia

By LabMedica International staff writers
Posted on 09 Jun 2020
Print article
Image: The Bio-Rad CFX96 Real-Time PCR Platform (Photo courtesy of Nanyang Technological University).
Image: The Bio-Rad CFX96 Real-Time PCR Platform (Photo courtesy of Nanyang Technological University).
Alpha-Thalassemia is a group of recessively inherited hemoglobin (Hb) disorders that result from decreased or absent synthesis of α-globin chains, affecting up to 5% of the world's population, mainly prevalent in the Mediterranean coastal countries, Southeast Asia, some African countries, and southern China.

Thalassemia is a group of inherited blood disorders that reduces the ability of blood to circulate oxygen throughout the body. The severity can vary from benign to life threatening; therefore, it is important to identify infants as early as possible who may develop thalassemia-associated symptoms, as well as parents who are carriers. This requires the availability of practical and precise molecular diagnostic tools.

Scientists at the Southern Medical University (Guangzhou, China) developed a rapid, accurate novel assay for non-deletional alpha-thalassemia genotyping based on one-step nested asymmetric polymerase chain reaction (PCR) melting curve analysis, which may enhance prenatal diagnosis, newborn screening, and large-scale population screening. To assess the assay for mass screening, 1,250 blood samples referred to their laboratory for the molecular diagnosis of α-thalassemia were randomly selected. The genomic DNA (gDNA) samples were extracted from peripheral blood lymphocytes using TIANamp Blood DNA Kit (TianGen Biotech Co, Ltd, Beijing, China). The assay was a one-step closed-tube genotyping method that involved nested asymmetric PCR and melting curve analysis running on a Bio-Rad CFX96 Real-Time PCR Platform (Bio-Rad, Hercules, CA, USA).

The investigators tested the ability of the new assay to detect five non-deletional alpha-thalassemia mutations. All five mutations were accurately identified with a concordance rate of 100% in a blind analysis of 255 samples with known genotypes, as determined by other analytic methods including gap-PCR, PCR-reverse dot blot (RDB), or Sanger sequencing. The investigators also tested the capability of the new assay to screen large populations. After testing 1,250 blood samples, the assay showed 100% sensitivity and specificity for all of the targeted mutations. The overall analysis time with the new assay was just under 2.5 hours. This is considerably faster than other molecular genetic testing methods, such as Sanger sequencing, which require 380 minutes, or RDB, which takes 300 minutes.

Wanjun Zhou, PhD, a medical geneticist and senior author of the study, said, “These other methods are unsuitable for use in large-scale screening programs because they have limitations such as cumbersome operation, low throughput, subjective interpretation, and possible laboratory contamination caused by post-PCR open-tube operation. Our results prove that this new assay is accurate, reliable, simple, and rapid and can meet the requirements for clinical diagnosis and mass screening of non-deletional alpha-thalassemia”.

The authors concluded that an assay of nested asymmetric PCR melting analysis for rapid and accurate genotyping of non-deletional α-thalassemia has been established, including the mutations of WS (HBA2: c.369C>G), QS (HBA2: c.377T>C), CS (HBA2: c.427T>C), CD30 (HBA2: c.91_93delGAG), and CD31 (HBA2: c. 95G>A). Moreover, the strategy of this study can effectively overcome the bottleneck of high homology and GC-rich secondary structure. The study was published on May 29, 2020 in The Journal of Molecular Diagnostics.

Related Links:
Southern Medical University
TianGen Biotech Co


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.