We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Genetic Decoding Improved for Neurodevelopmental Disorders

By LabMedica International staff writers
Posted on 23 Oct 2017
Print article
Image: An illustration of the human brain cerebral lobes: the frontal lobe (pink), parietal lobe (green), and occipital lobe (blue) (Photo courtesy of Wikimedia).
Image: An illustration of the human brain cerebral lobes: the frontal lobe (pink), parietal lobe (green), and occipital lobe (blue) (Photo courtesy of Wikimedia).
DLG2 gene study as a case in point that will help facilitate future diagnosis of children with neurodevelopmental disorders (NDDs), such as intellectual disability, autism, or early-onset symptoms of psychiatric diseases such as schizophrenia.

NDDs are a group of often severe pediatric conditions. The recent development of higher resolution genetic diagnostic tools has underlined the prevalence of genetic anomalies (e.g. gene copy-number variations) in children with NDDs.

In the study, two patients at Queen Fabiola Children's University Hospital (HUDERF; Brussels, Belgium) with NDDs (here cognitive and behavioral symptoms) showed partial loss, by deletion, of the DLG2 gene, which plays an important role in the development, plasticity, and stability of synapses.

A research team led by Dr. Guillaume Smits, Dr. Nicolas Deconinck, and Dr. Catheline Vilain of HUDERF and Prof. Gianluca Bontempi of ULB collaborated through the Interuniversity Institute of Bioinformatics in Brussels (IB), a joint research institute at Free University of Brussels (ULB; Brussels, Belgium) and Vrije Universiteit Brussel (VUB). Together, they worked at integrating large genomic, epigenomic, transcriptomic, and clinical datasets. The computational experiments, performed by Claudio Reggiani, a PhD student, pinpointed 2 novel DLG2 promoters and coding exons conserved in human and mouse and present in the fetal brain. The deletion of these new regions was found statistically associated with developmental delay and intellectual disability in 2 independent patient cohorts, supporting the pathogenic role of these new elements into the neurodevelopmental symptoms of both HUDERF patients. The findings are presented in a paper and summarized in a video.

From a medical perspective, the findings will help medical doctors in improving future diagnosing of children with NDDs. From a scientific point of view, this work shows how the in silico integration of multiple large datasets can bring knowledge about the genome. It also provides elegant progress into the molecular cause of NDDs and improves fundamental knowledge about the DLG2 gene.

The study, by Reggiani C et al, was published July 19, 2017, in the journal Genome Medicine.

Related Links:
Queen Fabiola Children's University Hospital
Free University of Brussels
Vrije Universiteit Brussel
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.