We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Protein Biomarker Signals More Aggressive Prostate Cancer

By LabMedica International staff writers
Posted on 05 May 2015
Prostate cancer (PCa), the most common male malignancy, is frequently associated with bone metastases and a major challenge for treatment is to identify factors controlling tumor growth and metastasis.

The metastatic process begins in the primary tumor with activation of genes that promote angiogenesis, the development of new blood vessels, tumor invasion and migration leading to colonization of peripheral tissues including bone.

Scientists at the University of Michigan (Ann Arbor, MI, USA) and their Italian colleagues investigated whether adding a phosphate group, a process called phosphorylation, to the protein Runt-related transcription factor 2 (Runx2), changes its structure to activate specific genes in both bone and prostate cancer cells, but with vastly different results. Bone cells need Runx2 and the newly roused genes to make healthy bone. However, in prostate cancer cells, Runx2 triggered genes that fuel tumor growth and metastasis. They analyzed tissue samples from 129 patients with prostate cancer.

The team used various techniques in the study including Western blot analysis and immunofluorescence, transient transfections, luciferase reporter assays and virus transduction, cell migration and cell invasion assays, and immunohistochemistry. Fluorescence was detected using an Olympus FluoView 500 Laser Scanning Confocal Microscope (Olympus Inc., Waltham, MA, USA). Tissue samples from a total of 129 Caucasian patients with prostate disease were used to construct tissue microarrays.

The investigators found little or no Runx2 phosphorylation in normal prostate, benign prostate or prostatitis, which suggests that Runx2 phosphorylation is closely associated with the more aggressive forms of prostate cancer. The next step is to establish an actual cause-effect relationship between Runx2 phosphorylation and prostate cancer. Renny T. Franceschi, PhD, the senior author of the study said, “If this biomarker does indeed control the growth of prostate cells, it's a new signal that's not been seen before and could provide a potential new drug target for prostate cancer. It could also be a potential biomarker to discriminate between fast and slow growing tumors.” The study was published on April 13, 2015, in the journal Oncogene.

Related Links:
University of Michigan
Olympus Inc.


Gold Member
Dengue Virus Test
LINEAR Dengue-CHIK
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Human Papillomavirus Test
RealLine HPV HCR Screen Kit
New
Whole Blood-Based Controls
Lyphochek Hemoglobin A1C Linearity Set
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: New Alzheimer’s studies have revealed disease biology, risk for progression, and potential for a novel blood test (Photo courtesy of Adobe Stock)

Novel Blood Test Could Reveal Alzheimer’s Disease Biology and Risk for Progression

The inability to diagnose Alzheimer’s disease, the most prevalent form of dementia in the elderly, at an early stage of molecular pathology is considered a key reason why treatments fail in clinical trials.... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Industry

view channel
Image: The Scopio X100 and X100HT full-field digital cell morphology solution (Photo courtesy of Beckman Coulter)

Beckman Coulter and Scopio Labs Add World's First Digital Bone Marrow Imaging and Analysis to Long-Term Partnership

Since 2022, Beckman Coulter (Brea, CA, USA) and Scopio Labs (Tel Aviv, Israel) have been working together to accelerate adoption of the next generation of digital cell morphology. Scopio's X100 and X100HT... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.