We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




AI-Based Digital Pathology Platform Improves Lung Cancer Diagnosis

By LabMedica International staff writers
Posted on 26 Aug 2024

Lung cancer ranks among the most prevalent and fatal cancers worldwide. More...

Current treatment strategies for lung cancer patients rely on pathological examinations, which can reveal genetic mutations specific to the patient's cancer, facilitating personalized treatment approaches. Over the last few years, pathology has evolved dramatically due to digital advancements, making traditional microscopes obsolete. Tissue samples are now digitized and analyzed via computer screens, which is essential for employing sophisticated artificial intelligence (AI)-based analytical methods. These AI technologies can extract additional insights from pathological tissue sections that were previously unattainable.

A team of researchers at the University of Cologne (Cologne, Germany) has developed an AI-driven digital pathology platform that can revolutionize the analysis of lung cancer tissues. This platform utilizes newly developed algorithms to perform fully automated examination of digitized lung cancer tissue sections, offering faster and more precise analyses than traditional methods. Detailed in their publication in the journal Cell Reports Medicine, the platform is founded on the most extensive and high-quality dataset available, enabling it to process H&E-stained whole-slide images (WSIs) of both resection and biopsy specimens from non-small cell lung cancer (NSCLC) patients. It can accurately segment all relevant tumor and benign tissue classes at the pixel level.

The core of this platform is a cutting-edge multi-class tissue segmentation algorithm, marking a significant leap in the accuracy and precision of lung cancer pathology. This development is among a handful of published studies that focus on tissue detection and classification in WSIs from lung cancer patients. Furthermore, the research team has identified four prognostic parameters that have proven effective in stratifying NSCLC patients prognostically, which could be crucial for determining patient eligibility for adjuvant therapy following surgery. To support ongoing academic research and enhance algorithm development and benchmarking, the team has made four of their annotated test datasets publicly available. This innovative platform is poised to transform various diagnostic, prognostic, and predictive applications within the field.

“We also show how the platform could be used to develop new clinical tools,” said physician Dr. Yuri Tolkach from the Institute of General Pathology and Pathological Anatomy at University Hospital Cologne, who led the study. “The new tools can not only improve the quality of diagnosis, but also provide new types of information about the patient’s disease, such as how the patient is responding to treatment.”

Related Links:
University of Cologne


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Portable Electronic Pipette
Mini 96
Specimen Radiography System
TrueView 200 Pro
New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: AiPlex VAS for the MosaiQ platform is designed to help reduce time-to-diagnosis for patients with autoimmune vasculitis (Photo courtesy of AliveDx)

Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis

Autoimmune vasculitis and related conditions are difficult to diagnose quickly and accurately, often requiring multiple tests to confirm the presence of specific autoantibodies. Traditional methods can... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.