Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Molecular Sensor Enables Fluorescence Imaging for Assessing Sarcoma Severity

By LabMedica International staff writers
Posted on 13 Sep 2024

Sarcoma is a diverse group of cancers that originates in soft tissues. More...

Due to their heterogeneous nature, quantitatively assessing the severity and metastasis of sarcomas in clinical pathology has been challenging, complicating diagnosis and prognosis monitoring. Moreover, conventional cancer stem cell (CSC) markers often exhibit overexpression in heterogeneous malignancies, making it difficult to identify and isolate CSCs within tumor cells. Researchers have now discovered a new candidate marker for determining the severity and metastasis of sarcoma and have developed a molecular sensor that enables fluorescence imaging targeting this marker.

A research team at Korea University College of Medicine (Seoul, South Korea) found a correlation between the expression of the conventional CSC marker CD44 and the prostaglandin synthesis network. They observed that Cyclooxygenase (COX) expression showed statistical specificity across different sarcomas. Building on these findings, the researchers designed two fluorescent probes, BD-IMC-1 and BD-IMC-2, which target COX enzymes and activate fluorescence upon disaggregation. This innovative approach allows for the visualization of CSCs within sarcoma tissues. Specifically, they linked BODIPY fluorescent molecules to the COX inhibitor indomethacin, creating molecules that induce self-aggregation of nanostructures and remain in a quenched fluorescent state in aqueous solutions. These molecules exhibit sensitive fluorescence only when bound to COX enzymes, functioning as chemosensors.

By employing COX inhibitors and fluorescent structures to disaggregate fluorescent molecules, they developed an imaging sensor that activates fluorescence. In the process, they also identified new candidate markers, indicating the need for further systematic research on the correlation between COX expression and CSC expression within sarcoma tissues. Previously, imaging molecules targeting COX enzymes induced changes in fluorescence characteristics at the single-molecule level to visualize COX enzymes. However, this study is the first to report imaging target proteins in fixed clinical samples based on the fluorescence characteristics resulting from structural changes in fluorescent multicomplexes. The research findings were published as the cover article in the international scientific journal Angewandte Chemie.

"The newly developed fluorescent molecular sensor does not rely on changes in fluorescence characteristics at the single-molecule level but utilizes the self-aggregated state and characteristics of multiple molecules, making it effective in complex samples such as biological tissues," said Professor Jun-Seok Lee from the Department of Pharmacology. "This research represents a new strategy for developing imaging sensors for various biological targets, contributing to the development of imaging-based diagnostic and prognostic monitoring techniques for sarcoma."

Related Links:
Korea University College of Medicine 


New
Gold Member
Collection and Transport System
PurSafe Plus®
Collection and Transport System
PurSafe Plus®
New
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: AiPlex VAS for the MosaiQ platform is designed to help reduce time-to-diagnosis for patients with autoimmune vasculitis (Photo courtesy of AliveDx)

Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis

Autoimmune vasculitis and related conditions are difficult to diagnose quickly and accurately, often requiring multiple tests to confirm the presence of specific autoantibodies. Traditional methods can... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.