We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Genetic Screening Can Identify Men at Higher Risk of Aggressive Prostate Cancer

By LabMedica International staff writers
Posted on 03 Mar 2014
Print article
Genetic mutations have been identified that facilitate screening of men for prostate cancer, particularly men with a family history of the disease, to identify those who are at higher risk of aggressive forms and in need of lifelong monitoring.

Scientists at The Institute of Cancer Research, (ICR; London, UK) found 13 mutations in known cancer genes that predicted the development of the prostate cancer (PrCa). The findings demonstrate not only that some men have a genetic profile that puts them at higher risk of PrCa, but that particular genetic profiles match to a higher risk of advanced, invasive disease. “The minefield of PrCa diagnosis is one of the biggest hurdles facing treatment of the disease today. Current tests fail to differentiate between aggressive cancers that could go on to kill and cancers that may never cause any harm. This lack of clarity means that too often men and their doctors are left having to make incredibly difficult decisions on whether to treat the disease or not," said Dr. Iain Frame, Director of Research at Prostate Cancer UK.

In the study, published by Leongamornlert et al. in the British Journal of Cancer, online ahead of print February 20, 2014, the researchers examined men with a history of three or more cases of PrCa in their close family, in order to mirror use of family history as a criterion for current gene testing programs in breast cancer. Blood samples from 191 men with PrCa at several different UK centers were analyzed. New “second generation” DNA sequencing technologies were used to assess mutations in 22 different known cancer genes simultaneously, opening up, for the first time, the prospect of rapid genetic screening for PrCa for a wide range of mutations.

The results showed 13 loss-of-function mutations among 8 DNA-repair genes. The eight genes were BRCA1 and BRCA2 (already routinely tested for in women with a strong family history of breast or ovarian cancer) plus ATM, CHEK2, BRIP1, MUTYH, PALB2, and PMS2. Men with ANY of these 13 mutations were much more likely than those without to develop an advanced, invasive form of cancer, which spread to the lymph nodes or other parts of the body, and to die from the disease.

“Our study shows the potential benefit of putting PrCa on a par with cancers such as breast cancer when it comes to genetic testing. Although ours was a small, first-stage study, we proved that testing for known cancer mutations can pick out men who are destined to have a more aggressive form of PrCa", said study co-leader Prof. Ros Eeles, professor of Oncogenics at the ICR. Fellow study co-leader Dr. Zsofia Kote-Jarai, senior staff scientist at the ICR, added, “One of the important messages to come out of our study is that mutations to at least eight genes—and probably many more—greatly increase the risk of aggressive PrCa. Any future screening program would need to assess as many of these genes as possible.”

Related Links:

Institute of Cancer Research 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.