We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Semi-Automated System Rapidly Identifies Pathogenic Genetic Variant Causing Rare Diseases

By LabMedica International staff writers
Posted on 27 Jun 2024
Print article
Image: The new technology can help solve the unsolvable in rare disease diagnoses (Photo courtesy of 123RF)
Image: The new technology can help solve the unsolvable in rare disease diagnoses (Photo courtesy of 123RF)

Many patients with rare diseases (50-75%) do not receive a diagnosis after genomic sequencing, often due to insufficient information on the variants identified. Reassessing data over time with new genetic insights can improve diagnostic rates. However, reanalyzing genetic data in clinical laboratories is often hampered by time and resource limitations. Now, a novel semi-automated system enables rapid reanalysis of unresolved rare disease cases by regularly comparing patient genomic data with the latest global research findings, aiming to identify elusive disease-causing genetic variants.

Developed by Mayo Clinic researchers in 2022 (Rochester, MN, USA), the system, named RENEW (REanalysis of NEgative Whole-exome/genome data), incorporates an advanced filtering system that scans new genetic data to identify the variants responsible for a patient’s condition. A recent study demonstrated RENEW’s effectiveness, providing likely diagnoses for 63 out of 1,066 previously undiagnosed cases. RENEW can review each of the 5,741 prioritized genomic variants in about 20 seconds on average, with the complete analysis per patient taking between 10 seconds to 1.5 hours. This contrasts sharply with the weeks often required for manual reanalysis, which involves detailed scrutiny of literature and patient records by researchers and clinicians.

"Considering that the majority of patients with rare diseases who undergo genomic sequencing remain without a diagnosis, this is no small accomplishment," said Alejandro Ferrer, Ph.D., a translational omics researcher at the center and lead author of the study recently published in Human Genetics. "Each successful diagnosis facilitated by RENEW signifies a profound breakthrough in providing answers and hope to people navigating the complexities of rare diseases."

Related Links:
Mayo Clinic

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
C-Reactive Protein Assay
OneStep C-Reactive Protein (CRP) RapiCard InstaTest
New
Blood Gas and Chemistry Analysis System
Edan i500

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.