We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

CEPHEID

Develops, manufactures, and markets molecular systems and tests for institutions to perform sophisticated genetic tes... read more Featured Products: More products

Download Mobile App




Automated Liquid Biopsy Test Detects Advanced Breast Cancer in Five Hours

By LabMedica International staff writers
Posted on 24 Jun 2022
Print article
Image: Automated liquid biopsy test quickly IDs cancer DNA in patients with metastatic breast cancer (Photo courtesy of Johns Hopkins)
Image: Automated liquid biopsy test quickly IDs cancer DNA in patients with metastatic breast cancer (Photo courtesy of Johns Hopkins)

Many patients with breast cancer do not respond to chemotherapy but go through multiple cycles of treatment before oncology teams can perform imaging studies to determine if a treatment is effective. Imaging can be effective at detecting changes in larger tumors, but it is nearly impossible to identify changes in smaller tumors. Now, a novel, automated liquid biopsy test in development can accurately detect the presence of cancer DNA in the blood of patients with metastatic breast cancer within five hours. The test, currently a prototype for research use only, potentially could be used to quickly help oncologists determine if cancer treatments are working.

The test, called the Liquid Biopsy for Breast Cancer Methylation (LBx-BCM), has been developed by researchers at Johns Hopkins Medicine (Baltimore, MD, USA) and is compatible with the GeneXpert molecular testing platform from Cepheid (Sunnyvale, CA, USA). It can detect methylation, a type of chemical tag, in one or more of nine genes altered in breast cancers in 4.5 hours. The test requires less than 15 minutes of hands-on time by a laboratory technician.

With the LBx-BCM test, a technician can place blood or plasma samples from cancer patients in tubes containing a reagent, a mixture used for extracting DNA, and place the contents in cartridges for the commercial system to chemically modify the DNA, and then amplify and detect methylated genes, returning results quickly. The assay looks for methylation markers (chemical alterations to DNA particular to cancer cells) among a panel of nine genes that recognize the four subtypes of breast cancer. The genes are AKR1B1, TM6SF1, ZNF671, TMEFF2, COL6A2, HIST1H3C, RASGRF2, HOXB4 and RASSF1.

To test LBx-BCM, investigators first had two individuals run the test on separate days, using stored samples from 11 patients with metastatic breast cancer and four without breast cancer. Results were the same for more than 90% of the cases. They also studied the test’s ability to detect metastatic breast cancer in two sets of samples from previous studies at Johns Hopkins. They examined cumulative methylation of the nine genes in 20 serum samples from patients with metastatic breast cancer and 20 from people without breast cancer.

A second set of samples from 40 people with metastatic breast cancer, 17 with benign breast disease and nine without breast cancer, was analyzed. In both sets, LBx-BCM detected two- to 200-fold more methylated DNA in plasma samples from those with breast cancer than in normal or benign samples. The test was found to correctly detect cancer 83% of the time, and correctly rule out cancer 92% of the time, for an overall diagnostic accuracy of 85%.

“Our goal was to develop an assay that would be sophisticated yet simple to perform worldwide and could be used at the point of care to provide same-day feedback to clinicians and patients,” said senior study author Saraswati Sukumar, Ph.D., professor of oncology and pathology at the Johns Hopkins University School of Medicine. “If we are able to show by this cartridge assay that we are indeed successful in predicting the course of treatment, we might be able to institute changes in the way we look at chemotherapy and the way we treat patients for metastatic breast cancer.”

Related Links:
Johns Hopkins Medicine 
Cepheid 

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Blood Gas and Chemistry Analysis System
Edan i500
New
PSA Test
Humasis PSA Card

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.