We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Genome Sequencing More Informative than Cytogenetic Analysis in Myeloid Cancers

By LabMedica International staff writers
Posted on 24 Mar 2021
Print article
Image: The NovaSeq 6000 sequencing instrument (Photo courtesy of Illumina)
Image: The NovaSeq 6000 sequencing instrument (Photo courtesy of Illumina)
Genetic profiling is a routine component of the diagnostic workup for an increasing number of cancers and is used to predict clinical outcomes and responses to targeted therapies. Genomic analysis is essential for risk stratification in patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS).

Whole-genome sequencing is an unbiased method of detecting all types of mutations and could potentially be used to replace current testing algorithms. Such sequencing can also be performed on a limited amount of DNA and can identify genomic changes that may be cryptic in other types of analyses. These features of whole-genome sequencing suggest that it could improve genomic profiling in patients with cancer.

A large team of scientists led by those at Washington University in St. Louis (St. Louis, MO, USA) used a streamlined whole-genome sequencing (ChromoSeq) approach to obtain genomic profiles for 263 patients with myeloid cancers, including 235 patients who had undergone successful cytogenetic analysis. The team analyzed the performance of whole-genome sequencing by comparing their results with findings from cytogenetic analysis and targeted sequencing. Sequencing was performed on NovaSeq 6000 sequencing instruments (Illumina, San Diego, CA, USA). The scientists used fluorescence in situ hybridization (FISH), polymerase chain reaction (PCR), chromosomal microarray analyses, and RNA-sequencing data to confirm findings on whole-genome sequencing that had not been detected by cytogenetic analysis.

The investigators reported that whole-genome sequencing detected all 40 recurrent translocations and 91 copy-number alterations that had been identified by cytogenetic analysis. In addition, they identified new clinically reportable genomic events in 40 of 235 patients (17.0%). Prospective sequencing of samples obtained from 117 consecutive patients was performed in a median of five days and provided new genetic information in 29 patients (24.8%), which changed the risk category for 19 patients (16.2%). Standard AML risk groups, as defined by sequencing results instead of cytogenetic analysis, correlated with clinical outcomes. Whole-genome sequencing was also used to stratify patients who had inconclusive results by cytogenetic analysis into risk groups in which clinical outcomes were measurably different.

The authors concluded that whole-genome sequencing provided rapid and accurate genomic profiling in patients with AML or MDS. Such sequencing also provided a greater diagnostic yield than conventional cytogenetic analysis and more efficient risk stratification on the basis of standard risk categories. The authors estimated the cost of WGS, as performed in their study, to be about USD 1,900, putting it in the range of other testing platforms. At high-throughput laboratories the cost could be about USD 1,300. As the cost of sequencing decreases, WGS will likely reach price parity with conventional testing platforms. The study was published on March 11, 2021 in The New England Journal of Medicine.

Related Links:
Illumina
Washington University in St. Louis


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Amoebiasis Test
ELI.H.A Amoeba
New
Benchtop Cooler
PCR-Cooler & PCR-Rack

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.