Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Events

10 Feb 2026 - 13 Feb 2026
17 Apr 2026 - 21 Apr 2026

Chemical Sensor Rapidly Detects Fungal Infections

By LabMedica International staff writers
Posted on 19 May 2016
An elevated concentration of D-arabitol, a simple sugar alcohol, in urine, especially compared to that of L-arabitol or creatinine, is indicative of a fungal infection, which can become deadly.

In healthy humans these forms, known as D-arabitol and L-arabitol, are formed in roughly the same amounts; however, cells of Candida species produce only D-arabitol. More...
The relative increase in the concentration of this enantiomer in body fluids can therefore herald infection.

Scientists at the Institute of Physical Chemistry of the Polish Academy of Sciences (Warsaw, Poland) devised, fabricated, and tested chemical sensors determining D-arabitol. These chemosensors comprised the quartz crystal resonator (QCR) or extended-gate field-effect transistor (EG-FET) transducers integrated with molecularly imprinted polymer (MIP) film recognition units.

The polymer film with molecular cavities binding D-arabitol was prepared using the molecular imprinting technique. The process began by dissolving D-arabitol in acetonitrile. Then boric acid labeled with bithiophene, whose molecules bound to the D-arabitol in particular positions, was added to the solution. The bithiophene substituent permitted the electrochemical polymerization of the solution. A polymer film having a rigid structure was thus created, from which all that was needed was to rinse out the D-arabitol molecules to obtain a film with molecular cavities of the desired shape and properties.

The detection polymer films produced a thickness of about 200 nanometers. They are deposited either on gold electrodes, or on quartz resonators. After immersing a sample taken from a patient in the solution, D-arabitol particles get stuck in the molecular cavities of the films and depending on the method of detection, either change the flow of current through a field-effect transistor having a gate connected to an electrode or the oscillation resonance frequency of a piezoelectric resonator. The chemical sensor enabled the detection time of fungi to be shortened from the current couple of days to just a few minutes.

With the QCR and EG-FET chemosensors, the D-arabitol concentration was determined under flow-injection analysis and stagnant-solution binding conditions, respectively. Selectivity with respect to common interferences, and L-arabitol in particular, of the devised chemosensors was superior. Limits of detection and linear dynamic concentration ranges of the QCR and EG-FET chemosensors were 150 µM and 150µM to 1.25 mM as well as and 120 µM to 1.00 mM, respectively, being lower than the d-arabitol concentrations in urine of patients with invasive candidiasis, which was greater than 220 μM. The authors concluded that the devised chemosensors are suitable for early diagnosis of fungal infections caused by Candida sp. yeasts. The study was published in the May 2016 issue of the journal Biosensors and Bioelectronics.

Related Links:
Institute of Physical Chemistry of the Polish Academy of Sciences



Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.