We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy

By LabMedica International staff writers
Posted on 28 Mar 2025
Print article
Image: Microscopic images showing healthy villi on the left and diseased villi on the right (Photo courtesy of Florian Jaeckle/University of Cambridge)
Image: Microscopic images showing healthy villi on the left and diseased villi on the right (Photo courtesy of Florian Jaeckle/University of Cambridge)

Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation in symptoms between individuals, patients often struggle to obtain an accurate diagnosis. The standard method for diagnosing coeliac disease involves performing a biopsy of the duodenum (the first part of the small intestine). Pathologists then examine the sample under a microscope or on a computer to identify damage to the villi, which are tiny hair-like structures lining the small intestine. Interpreting these biopsies can be challenging, as the changes often appear subtle. Pathologists typically use the Marsh-Oberhuber scale to assess the severity of the condition, ranging from zero (normal villi, indicating a low likelihood of coeliac disease) to four (completely flattened villi, indicating severe disease). New research now shows that a machine learning algorithm was able to accurately determine, in 97 out of 100 cases, whether an individual had coeliac disease based on their biopsy.

This AI tool, developed by scientists at the University of Cambridge (Cambridge, UK), could expedite the diagnosis of coeliac disease, alleviate pressure on strained healthcare systems, and improve diagnoses in developing countries, where there is a significant shortage of pathologists. In research published in The New England Journal of Medicine AI, the Cambridge researchers presented their machine learning algorithm designed to classify biopsy image data. The algorithm was trained on a comprehensive dataset of over 4,000 images obtained from five hospitals, utilizing five different scanners from four different manufacturers. The team also tested their algorithm on an independent dataset of almost 650 images from an unseen source. When compared with the original diagnoses made by pathologists, the model correctly identified the presence or absence of coeliac disease in more than 97 cases out of 100.

The model demonstrated a sensitivity of over 95%, meaning it accurately identified more than 95 out of 100 individuals with coeliac disease. Additionally, it had a specificity of nearly 98%, meaning it correctly identified almost 98 out of 100 individuals without the disease. Previous research by the team has shown that even pathologists can have differing opinions. In one study, when asked to diagnose coeliac disease on a series of 100 slides, more than one in five cases led to disagreements among pathologists. In this new study, the researchers asked four pathologists to review 30 slides and found that a pathologist was just as likely to agree with the AI model as they were with another pathologist.

“This is the first time AI has been shown to diagnose as accurately as an experienced pathologist whether an individual has coeliac or not. Because we trained it on data sets generated under a number of different conditions, we know that it should be able to work in a wide range of settings, where biopsies are processed and imaged differently,” said Dr. Florian Jaeckle, from the Department of Pathology, and a Research Fellow at Hughes Hall, Cambridge. “This is an important step towards speeding up diagnoses and freeing up pathologists’ time to focus on more complex or urgent cases. Our next step is to test the algorithm in a much larger clinical sample, putting us in a position to share this device with the regulator, bringing us nearer to this tool being used in the NHS.”

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
H-FABP Assay
Heart-Type Fatty Acid-Binding Protein Assay
New
Chagas Disease Test
LIAISON Chagas

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.