We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

Novel Microscopy Technique Comes Closer to Use in Clinical Diagnostics

By LabMedica International staff writers
Posted on 14 Mar 2023
Print article
Image: New research is set to bring Brillouin microscopy closer to widespread use in diagnostic medicine (Photo courtesy of Wayne State University)
Image: New research is set to bring Brillouin microscopy closer to widespread use in diagnostic medicine (Photo courtesy of Wayne State University)

Diagnostic imaging plays a crucial role in aiding physicians and researchers in understanding internal body structures, thus improving clinical analysis and medical intervention. Scientists continually explore new avenues to utilize imaging technologies to gain insight into human health. A pioneering imaging method called Brillouin microscopy enables the mapping of cell and tissue stiffness, often linked to early symptoms of ailments such as cancer and Alzheimer's. This method is distinct from conventional imaging modalities such as confocal fluorescence microscopy, as it allows label-free and non-contact acquisition of key mechanical information like viscosity and stiffness of biological specimens. Now, researchers are striving to refine Brillouin microscopy, which can answer many important questions in biophysics and mechanobiology.

Brillouin microscopy, an optical imaging method rooted in Brillouin light scattering (BLS), was first introduced by French physicist Léon Brillouin in 1922. When light interacts with a substance, thermal fluctuations or molecular vibrations within the material cause the light to scatter resulting in BLS. These vibrations can be influenced by various factors such as compression, water content, heat, or material stiffness. Among these factors, stiffness is incredibly valuable for the diagnostic application of Brillouin microscopy. Changes in cell stiffness, often linked to the progression of ailments like cancer metastasis, are challenging to measure since cells are microscopic and situated in very delicate tissues.

In conventional approaches, prepared cells are measured on a petri dish or other rigid substrates. However, Brillouin microscopy relies solely on a laser beam to investigate the mechanical properties, enabling measurement when cells are in their physiological conditions. As no physical interaction is required, Brillouin technology is less invasive and more convenient. The technology is important for understanding embryonic tissue development, particularly to gain a better understanding of birth-related diseases and disorders.

Researchers at Wayne State University (Detroit, MI, USA) examined the use of dual line-scanning Brillouin microscopy (dLSBM) to overcome two significant limitations - acquisition speed and irradiation doses - that hinder its widespread usage in biomedicine. The application of dLSBM yielded 50 to 100 times faster speeds than its counterpart, with a reduction of 80 times light irradiation levels for 2D and 3D mechanical mapping.

“With this innovation, we can acquire one mechanical image of cell clusters in a few minutes,” said Jitao Zhang, assistant professor of biomedical engineering (BME) at Wayne State University. “This improved acquisition speed is important because it allows us to investigate details of cell behaviors in almost real time.”

“Due to the 3D structure of an embryo, traditional contact-based techniques encounter big challenges for in vivo measurement,” added Zhang. “Since Brillouin microscopy works in a non-contact manner, it sometimes becomes the only available choice.”

Related Links:
Wayne State University

Platinum Supplier
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Gold Supplier
DNA Extraction Kit
MagMAX DNA Multi-Sample Ultra 2.0 Kit
POCT Fluorescent Immunoassay Analyzer
Oral Fluid Collection Device
Intercept i2he

Print article


Clinical Chemistry

view channel
Image: A module with eight micro-devices, complete with microfluidic channels and drive motors (Photo courtesy of U.S Department of Energy)

Highly Sensitive pH Sensor to Aid Detection of Cancers and Vector-Borne Viruses

Understanding the acidity or alkalinity of substances through pH measurement is crucial in many fields, from environmental monitoring to healthcare product safety. In many cases, these measurements must... Read more

Molecular Diagnostics

view channel
Image: The PrismRA blood test helps target best treatments for patients with rheumatoid arthritis (Photo courtesy of Scipher Medicine)

Groundbreaking Rheumatoid Arthritis Blood Test Predicts Treatment Response

Rheumatoid arthritis (RA), an autoimmune disease affecting joints and other systems in the body, impacts millions globally. Typically, the initial biologic treatment involves anti-inflammatory drugs from... Read more


view channel
Image: The QScout hematology analyzer has received US FDA 510(k) clearance (Photo courtesy of Ad Astra Diagnostics)

First Rapid-Result Hematology Analyzer Reports Measures of Infection and Severity at POC

Sepsis, a critical medical condition that arises as an extreme response to infection, poses a significant health threat. It occurs when an infection triggers a widespread inflammatory response in the body.... Read more


view channel
Image: PointCheck is the world’s first device for non-invasive white cell monitoring (Photo courtesy of Leuko Labs)

World’s First Portable, Non-Invasive WBC Monitoring Device to Eliminate Need for Blood Draw

One of the toughest challenges for cancer patients undergoing chemotherapy is experiencing a low count of white blood cells, also known as neutropenia. These cells play a crucial role in warding off infections.... Read more


view channel
Image: Current testing methods for antibiotic susceptibility rely on growing bacterial colonies in the presence of antibiotics (Photo courtesy of 123RF)

Rapid Antimicrobial Susceptibility Test Returns Results within 30 Minutes

In 2019, antimicrobial resistance (AMR) was responsible for the deaths of approximately 1.3 million individuals. The conventional approach for testing antimicrobial susceptibility involves cultivating... Read more


view channel
Image: The acquisition significantly expands Medix Biochemica’s portfolio of IVD raw materials (Photo courtesy of ViroStat)

Medix Biochemica Acquires US-Based ViroStat to Expand Infectious Diseases Antibody Offering

Medix Biochemica (Espoo, Finland), a supplier of critical raw materials to the in vitro diagnostics (IVD) industry, has acquired ViroStat LLC (Portland, ME, USA), a provider of infectious disease antibodies... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.