We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




PCR-Based Blood Test Diagnoses Rare Childhood Germ Cell Cancer

By LabMedica International staff writers
Posted on 28 Dec 2015
A team of British researchers has developed a noninvasive, low cost blood test for the diagnosis of rare childhood germ cell cancer.

The five year disease-free and overall survival rates for patients with high-risk malignant germ cell tumors are less than 50%, so improved diagnostic and monitoring techniques are required to improving outcomes for patients. More...
Currently, biopsy is the most commonly used diagnostic method, but this technique is prone to sampling errors and may not be representative of the tumor as a whole. Computerized tomography (CT) scans and magnetic resonance imaging (MRI) also provide useful information but are not diagnostic and do not discriminate between benign and malignant tumors.

Investigators at the University of Cambridge (United Kingdom; www.cam.ac.uk) have now described a noninvasive, low cost blood test for the diagnosis of germ cell tumors.

This test is a qRT–PCR (quantitative real-time PCR [polymerase chain reaction]) profiling analysis of the microRNAs miR–371–373 and miR–302/367 cluster miRNAs, which are overexpressed in all malignant germ cell tumors. Some of these miRNAs show elevated serum levels at diagnosis.

MicroRNAs (miRNAs) are a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA (mRNA) in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation.

The investigators used their assay to evaluate a total of 45 serum and CSF samples, obtained from 25 pediatric patients. They found that a four-serum miRNA panel (miR–371a–3p, miR–372–3p, miR–373–3p, and miR–367–3p): (i) showed high sensitivity/specificity for diagnosing pediatric extracranial malignant germ cell tumor; (ii) allowed early detection of relapse of a testicular mixed malignant germ cell tumor; and (iii) distinguished intracranial malignant germ cell tumor from intracranial non-germ cell tumors at diagnosis, using CSF and serum samples.


"Although relatively rare, childhood germ cell tumors need to be diagnosed accurately and followed up carefully to give us the best chances of treating them," said senior author Dr. Nicholas Coleman, professor of pathology at the University of Cambridge. "At the moment, we are not good enough at diagnosing these tumors and monitoring their treatment: we need better, safer, and more cost-effective tests."

The study was published in the December 15, 2015, online edition of the British Journal of Cancer.

Related Links:
University of Cambridge



Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.