We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Microfluid Chip Traps Migrating Tumor Cell Clusters

By LabMedica International staff writers
Posted on 01 Jun 2015
A microfluidic chip has been developed that can capture rare clusters of circulating tumor cells, which could yield important new insights into how cancer spreads.

One way cancer spreads from the primary tumor to other parts of the body is when tumor cells break off and travel through the bloodstream and these circulating tumor cells (CTCs) are very rare, and travel either singly or in clusters and the new device can capture these very rare clusters of migrating cancer cells.

Scientists at Massachusetts General Hospital (Boston, MA, USA) and their colleagues used the new chip to capture and analyze CTC clusters from 60 patients with metastatic breast, prostate and melanoma cancers. More...
The chip was designed to slowly push blood through many rows of microscopic triangle-shaped posts. The posts are arranged in such a way that every two posts funnels cells towards the tip of a third post. At the tip, single cells, including blood cells and single CTCs , easily slide to either side of the post and continue through the chip until reaching the next tip; however CTC clusters are left at the tip, hanging in the balance due to forces pulling them down the post in opposite direction.

To determine the efficiency of the device called, Cluster-Chip, the team introduced fluorescently tagged cell clusters, ranging from 2 to 30 cells, into the chip and counted the number of clusters that were captured and the number that flowed through undetected. At a blood flow rate of 2.5 mL/hour, the chip captured 99% of clusters containing four or more cells, 70% of three-cell clusters, and 41% of two-cell clusters. Comparison of the clusters under a microscope before and after capture found that the chip had no negative effects on the integrity of the clusters as a whole.

Roderic I. Pettigrew, PhD, MD, director of the National Institute of Biomedical Imaging and Bioengineering (Bethesda, MD, USA) said, “Given the increasing number of cancer therapies that engage the immune system, the ability to monitor tumor-immune cell interactions via the blood could be of great value. Very little is known about CTC clusters and their role in the progression and metastasis of cancer. This unique technology presents an exciting opportunity to capture these exceptionally rare groups of cells for further analysis in a way that is minimally invasive. This is the kind of breakthrough technology that could have a very large impact on cancer research.” The study was published on May 18, 2015, in the journal Nature Methods.

Related Links:

Massachusetts General Hospital 
National Institute of Biomedical Imaging and Bioengineering 



Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Pipet Controller
Stripettor Pro
New
Luteinizing Hormone Assay
DRG LH-Serum ELISA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.