We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Immunohistochemistry as Effective as DNA Hybridization for Detecting ALK Rearrangement in Lung Cancer Patients

By LabMedica International staff writers
Posted on 08 Jul 2013
A team of Chinese researchers demonstrated that immunohistochemistry (IHC) provided a reliable and cost-effective diagnostic approach in routine pathologic laboratories for the identification of patients with non-small-cell lung cancer (NSCLC), in particular adenocarcinomas (ADCs), suitable for ALK-targeted therapy.

The ALK gene can be oncogenic in three ways: by forming a fusion gene with any of several other genes, by gaining additional gene copies, or with mutations of the actual DNA code for the gene itself. More...
The EML4-ALK (echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase) fusion gene is responsible for approximately 3%–5% of cases of NSCLC. The standard tests used to detect this gene in tumor samples is fluorescence in situ hybridization (FISH), and Reverse Transcriptase-PCR (RT-PCR). The FISH technique utilizes a DNA probe labeled with a fluorescent dye that is hybridized with target DNA, usually chromosome preparations on a microscopic slide. It is used to precisely map genes to a specific region of a chromosome in prepared karyotype, or can enumerate chromosomes, or can detect chromosomal deletions, translocations, or gene amplifications in cancer cells.

As IHC is a less complex and less costly technology than FISH, investigators at the Chinese University of Hong Kong SAR (China) evaluated its practical usefulness for detection of ALK rearrangement in NSCLC ADCs. They tested 373 lung ADCs for ALK rearrangement by IHC and FISH. Multiplex RT-PCR was performed to confirm the fusion variants.

Results showed that 22 of 373 lung ADCs (5.9%) were positive for ALK immunoreactivity. ALK-positive tumor cells demonstrated strong and diffused granular staining in the cytoplasm. All the ALK IHC-positive cases were confirmed to harbor ALK rearrangement, by either FISH, or RT-PCR. Two cases that were positive for ALK protein expression by IHC, but negative by FISH were shown to harbor EML4-ALK variant 1 by RT-PCR. None of the ALK IHC-negative cases was FISH-positive.

These results allowed the investigators to conclude that, "IHC can effectively detect ALK rearrangement in lung cancer. It might provide a reliable and cost-effective diagnostic approach in routine pathologic laboratories for the identification of suitable candidates for ALK-targeted therapy."

The study was published in the July 2013 issue of the Journal of Thoracic Oncology.

Related Links:
Chinese University of Hong Kong



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The liquid biopsy approach measures randomness in DNA methylation patterns to detect early-stage cancer signals in blood (Photo courtesy of 123RF)

Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability

Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.