We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Immunohistochemistry as Effective as DNA Hybridization for Detecting ALK Rearrangement in Lung Cancer Patients

By LabMedica International staff writers
Posted on 08 Jul 2013
A team of Chinese researchers demonstrated that immunohistochemistry (IHC) provided a reliable and cost-effective diagnostic approach in routine pathologic laboratories for the identification of patients with non-small-cell lung cancer (NSCLC), in particular adenocarcinomas (ADCs), suitable for ALK-targeted therapy.

The ALK gene can be oncogenic in three ways: by forming a fusion gene with any of several other genes, by gaining additional gene copies, or with mutations of the actual DNA code for the gene itself. More...
The EML4-ALK (echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase) fusion gene is responsible for approximately 3%–5% of cases of NSCLC. The standard tests used to detect this gene in tumor samples is fluorescence in situ hybridization (FISH), and Reverse Transcriptase-PCR (RT-PCR). The FISH technique utilizes a DNA probe labeled with a fluorescent dye that is hybridized with target DNA, usually chromosome preparations on a microscopic slide. It is used to precisely map genes to a specific region of a chromosome in prepared karyotype, or can enumerate chromosomes, or can detect chromosomal deletions, translocations, or gene amplifications in cancer cells.

As IHC is a less complex and less costly technology than FISH, investigators at the Chinese University of Hong Kong SAR (China) evaluated its practical usefulness for detection of ALK rearrangement in NSCLC ADCs. They tested 373 lung ADCs for ALK rearrangement by IHC and FISH. Multiplex RT-PCR was performed to confirm the fusion variants.

Results showed that 22 of 373 lung ADCs (5.9%) were positive for ALK immunoreactivity. ALK-positive tumor cells demonstrated strong and diffused granular staining in the cytoplasm. All the ALK IHC-positive cases were confirmed to harbor ALK rearrangement, by either FISH, or RT-PCR. Two cases that were positive for ALK protein expression by IHC, but negative by FISH were shown to harbor EML4-ALK variant 1 by RT-PCR. None of the ALK IHC-negative cases was FISH-positive.

These results allowed the investigators to conclude that, "IHC can effectively detect ALK rearrangement in lung cancer. It might provide a reliable and cost-effective diagnostic approach in routine pathologic laboratories for the identification of suitable candidates for ALK-targeted therapy."

The study was published in the July 2013 issue of the Journal of Thoracic Oncology.

Related Links:
Chinese University of Hong Kong



Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Cytomegalovirus Test
NovaLisa Cytomegalovirus (CMV) IgG Test
New
Chlamydia Trachomatis Assay
Chlamydia Trachomatis IgG
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.