We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Epigenetic Test Could Determine Efficacy of New Immunotherapy Treatments Against Multiple Myeloma

By LabMedica International staff writers
Posted on 11 Oct 2024

Multiple myeloma is a blood cancer that primarily affects individuals over the age of sixty, and its occurrence rises as the population ages. More...

In this disease, the bone marrow—the spongy tissue inside bones that produces normal blood cells—becomes overrun by abnormal plasma cells. Under normal conditions, plasma cells are part of the immune system, helping to fight infections, but in multiple myeloma, they become malignant, damaging the bone marrow and spreading to other areas such as the spine, skull, pelvis, and ribs. While current treatments can manage the disease for extended periods, a definitive cure remains elusive. However, advancements in immunotherapy, including the use of antibodies and engineered immune cells, have opened new possibilities for treating patients who relapse or are resistant to standard therapies.

Now, researchers at Josep Carreras Leukemia Research Institute (IJC, Barcelona, Spain) have demonstrated an epigenetic test that predicts the effectiveness of new immunotherapy treatments for multiple myeloma. In a study published in Leukemia, a journal from the Nature group, the team focused on identifying genes altered in cancer that are involved in immune system function and antigen recognition. This led them to discover a subgroup of multiple myeloma patients with an epigenetic modification in the PVR gene, a key immune system regulator, which resulted in the gene losing its activity.

The researchers observed that patients with this PVR gene defect experienced a better disease progression, leading them to hypothesize that cancer cells in these individuals might be more susceptible to immune system attacks. To test this idea, they used a cellular model of multiple myeloma, eliminating the PVR gene to observe how the cells responded to various immunotherapy approaches, including antibodies, T-lymphocytes, and genetically engineered natural killer cells (CAR-T cells). In all instances, the immune response effectively targeted and attacked the tumor cells in vitro. This discovery could help clinicians identify which patients are likely to benefit most from immunotherapy, improving personalized treatment strategies and clinical management.

“Our results demonstrate that in this malignant blood disease, inhibiting the PVR gene decisively increases the probability of success of immunotherapy,” said Dr. Manel Esteller, ICREA Research Professor at IJC, who directed the research “Now, then, it would be the turn of the pharmaceutical industry and clinical research to bring these results to the bedside of the patient."

Related Links:
IJC


New
Gold Member
Collection and Transport System
PurSafe Plus®
Collection and Transport System
PurSafe Plus®
New
Urine Chemistry Control
Dropper Urine Chemistry Control
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: AiPlex VAS for the MosaiQ platform is designed to help reduce time-to-diagnosis for patients with autoimmune vasculitis (Photo courtesy of AliveDx)

Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis

Autoimmune vasculitis and related conditions are difficult to diagnose quickly and accurately, often requiring multiple tests to confirm the presence of specific autoantibodies. Traditional methods can... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.