Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Acute Myeloid Leukemia Regulatory Networks Identified

By LabMedica International staff writers
Posted on 28 Nov 2018
Adult acute myeloid leukemia (AML) is a type of cancer in which the bone marrow makes abnormal myeloblasts (a type of white blood cell), red blood cells, or platelets. More...
AML is a heterogeneous disease caused by a variety of alterations in transcription factors, epigenetic regulators and signaling molecules.

Through an integrated analysis of purified leukemic blast cells, scientists have analyzed transcriptional networks in dozens of AML cases, along with the cis-regulatory element alterations coinciding with them. The findings highlighted ties between transcriptomic and epigenomic features that correspond to specific transcription factor, signaling molecule, or nuclear protein gene mutations in AML.

A team of scientists at the University of Birmingham (Birmingham, UK) and their colleagues determined how different mutant regulators establish AML subtype–specific transcriptional networks, and performed a comprehensive global analysis of cis-regulatory element activity and interaction, transcription factor occupancy and gene expression patterns in purified leukemic blast cells.

The team focused on specific subgroups of subjects carrying mutations in genes encoding transcription factors: Runt-related transcription factor 1 (RUNX1), and CCAAT-enhancer binding protein alpha (CEBPα); signaling molecules: fms-like tyrosine kinase 3- Internal Tandem Duplication (FLT3-ITD), and RAS, and the nuclear protein nucleophosmin (NPM1). Integrated analysis of these data demonstrates that each mutant regulator establishes a specific transcriptional and signaling network unrelated to that seen in normal cells, sustaining the expression of unique sets of genes required for AML growth and maintenance.

The team performed transcriptomic analyses, chromatin conformation capture profiling, and digital footprinting in leukemic blast cells from AML cases with specific transcription factor or signaling gene mutations identified with targeted sequencing on 55 cancer-related genes. In particular, the team incorporated RNA sequence data and open chromatin-mapping DNase I sequence from 29 purified leukemic blast samples from bone marrow or peripheral blood samples in AML cases involving a series of distinct mutations, including several distinct RUNX1 alterations. Along with promoter cis-regulatory element interaction profiles and data for a dozen samples assessed with at least one genomic approach, the data revealed transcriptome, chromatin, transcription factor occupancy, and regulatory clusters that coincided with specific AML mutation subsets.

Constanze Bonifer, PhD, a professor and co-senior author of the study, said, “Crucially, AML cells from patients with the same types of mutations always take the same route when they head off in the wrong direction. Our analyses of each of the pathways that the cells took when developing into cancer identified key points in the cell that could be used in the future to target and develop new drugs to treat each type of AML in a different way.” The study was published on November 12, 2018, in the journal Nature Genetics.

Related Links:
University of Birmingham


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Clinical Chemistry System
P780
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: LiDia-SEQ aims to deliver near-patient NGS testing capabilities to hospitals, labs and clinics (Photo courtesy of DNAe)

World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device

Rapid point-of-need diagnostics are of critical need, especially in the areas of infectious disease and cancer testing and monitoring. Now, a direct-from-specimen platform that performs genomic analysis... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.