We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Strange Chimeras Defy Scientific Understanding of Human Genetics

By LabMedica International staff writers
Posted on 18 Oct 2016
Print article
Image: A diagram of mechanisms of RNA-Mediated DNA Rearrangement. (A) Chimeric RNAs act as repair templates for double-strand DNA breakage. (B) Chimeric RNAs act as scaffolds to bring two genomic loci into proximity, which might promote breakage and fusion between the two gene loci (Photo courtesy of the University of Virginia).
Image: A diagram of mechanisms of RNA-Mediated DNA Rearrangement. (A) Chimeric RNAs act as repair templates for double-strand DNA breakage. (B) Chimeric RNAs act as scaffolds to bring two genomic loci into proximity, which might promote breakage and fusion between the two gene loci (Photo courtesy of the University of Virginia).
The human genome is far more complex than thought, with genes functioning in an unexpected fashion that scientists have wrongly assumed must indicate cancer as gene fusions and their encoded products fusion ribonucleic acids (RNAs) and proteins are viewed as one of the hallmarks of cancer.

Traditionally, gene fusions were thought to be generated solely by chromosomal rearrangements. However, recent discoveries of trans-splicing and cis-splicing events between neighboring genes suggest that there are other mechanisms to generate chimeric fusion RNAs without corresponding changes in DNA.

Scientists at the University of Virginia (Charlottesville, VA, USA) have reviewed the emerging field that is challenging fundamental assumptions about human genetics. They seek to understand what is called chimeric RNA, genetic material that results when genes on two different chromosomes produce "fusion" RNA in a way scientists say should not happen. Scientists have traditionally assumed these chimeric RNA are signs of cancer, of something gone wrong in the genetic transcription process, but the investigators work shows that's not always the case. Instead, these strange fusions can also be a normal, functional part of our genetic programming.

In addition, chimeric RNAs have been detected in normal physiology, complicating the use of fusions in cancer detection and therapy. By contrast, ‘intergenically spliced’ fusion RNAs represents a new repertoire of biomarkers and therapeutic targets. The team reviewed the current knowledge on chimeric RNAs and implications for cancer detection and treatment, and discusses outstanding questions for the advancement of the field.

Hui Li, PhD, an associate professor of Pathology and senior author of the study, said, “This is the main concept we want to let the field of cancer biology know: this kind of thing exists in normal physiology. It's not cancer specific. There's a danger to assuming everything is cancer. That's actually dangerous. Don't rush to judgment about all of these chimeras you find in cancer cells, because they could occur in normal cells.”

Because these natural chimeras were discovered so recently, relatively little is known about them. Professor Li and his fellow scientists have shown that they occur when the instructions in our DNA are being carried out by RNA inside our cells. But the scientists can't say how the fusions occur or why they occur or exactly how frequently they occur. And that speaks to how much there is to learn. To build a foundation for discovery, Professor Li is creating a database of naturally occurring fusions, to help sort normal chimeras from ones that might be signs of cancer The study was published in the September 2016 issue of the journal Trends in Cancer.

Related Links:
University of Virginia

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Sampler device could revolutionize sample collection for diagnostic tests (Photo courtesy of ReadyGo Diagnostics)

First of Its Kind Universal Tool to Revolutionize Sample Collection for Diagnostic Tests

The COVID pandemic has dramatically reshaped the perception of diagnostics. Post the pandemic, a groundbreaking device that combines sample collection and processing into a single, easy-to-use disposable... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.