We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Gene Variations Can Predict Radiation-Induced Toxicity Risk

By LabMedica International staff writers
Posted on 04 Aug 2014
Key genetic variants may affect how cancer patients respond to radiation treatments, according to new research. More...
Scientists discovered that differences in the TANC1 (tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 1) gene are associated with a greater risk for radiation-fueled side effects in prostate cancer patients, which include impotence, diarrhea, and incontinence.

These findings, published July 2014 in Nature Genetics, are based on a genome-wide association study, a type of study in which researchers studied a variety of genetic variants to see if any of them are tied to a specific type of complication, which could sometimes appear years after treatment was completed.

“Our findings, which were replicated in two additional patient groups, represent a significant step towards developing personalized treatment plans for prostate cancer patients,” said Barry S. Rosenstein, PhD, professor, radiation oncology, genetics and genomic sciences, Icahn School of Medicine at Mount Sinai (New York, NY, USA), the lead Mount Sinai investigator on the study. “Within five years, through the use of a predictive genomic test that will be created using the data obtained in the recent study, it may be possible to optimize treatment for a large number of cancer patients.”

For the study, Dr. Rosenstein and his colleagues obtained blood samples from nearly 400 patients who were receiving radiotherapy treatment for prostate cancer. The blood samples were screened for roughly one million genetic markers, and each patient was monitored for at least two years to monitor incidents of side effects from the radiation. Data analysis revealed which genetic markers were consistently associated with the development of complications following radiotherapy.

“The next step is to validate the results, and see if the same markers predict similar outcomes in patients with other forms of cancer,” said Dr. Rosenstein. Using the genomic test being developed, treatment plans can be adjusted to curtail adverse effects thereby allowing for an improved quality life for many cancer survivors.

Related Links:

Icahn School of Medicine at Mount Sinai



Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Clinical Chemistry System
P780
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The test utilizes mtDNA biomarkers to detect molecular signatures associated with endometriosis (Photo courtesy of Shutterstock)

Endometriosis Blood Test Could Replace Invasive Laparoscopic Diagnosis

Endometriosis affects an estimated 1 in 10 women globally, yet diagnosis can take 7 to 10 years on average due to the invasive nature of laparoscopy and lack of accurate, non-invasive tests.... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.