We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New System Breaks Technology and Cost Barriers for High-Throughput Large-Genome Sequencing

By LabMedica International staff writers
Posted on 28 Jan 2014
A new DNA sequencing system utilizes advanced design features to generate massive throughput and enable the world's first USD 1000 human genome sequence.

This achievement has been reached with the new HiSeq X Ten Sequencing System from Illumina (San Diego, CA, USA). More...
The platform includes technology breakthroughs that enable researchers to undertake population and disease studies of unprecedented scale by providing the throughput to sequence tens of thousands of human whole genomes in a single year in a single lab. The HiSeq X Ten is the world’s first platform to deliver high quality, high-coverage human genome sequences for less than USD 1,000—inclusive of typical instrument depreciation, DNA extraction, library preparation, and estimated labor.

Purpose-built for population-scale human whole genome sequencing, the HiSeq X Ten is a platform especially suitable for scientists and institutions focused on the discovery of genotypic variation to enable a deeper understanding of biology and disease. It can deliver a comprehensive catalog of human variation within and outside of coding regions. “The ability to explore the human genome on this scale will bring the study of cancer and complex diseases to a new level. Breaking the ‘sound barrier’ of human genetics not only pushes us through a psychological milestone, it enables projects of unprecedented scale. We are excited to see what lies on the other side,” said Jay Flatley, CEO, Illumina.

Building on the proven performance of Illumina sequencing-by-synthesis (SBS) technology, HiSeq X Ten utilizes a number of advanced design features to generate massive throughput. Patterned flow cells (which contain billions of nanowells at fixed locations) combined with a new clustering chemistry deliver a significant increase in data density (6 billion clusters per run). Using state-of-the art optics and faster chemistry, HiSeq X Ten can process sequencing flow cells more quickly than ever before – generating a 10x increase in daily throughput when compared to current HiSeq 2500 performance. The HiSeq X Ten is sold as a set of 10 or more ultra-high throughput sequencing systems, each generating up to 1.8 terabases (Tb) of sequencing data in less than 3 days or up to 600 gigabases (Gb) per day, per system.

Initial users of the transformative HiSeq X Ten System include Macrogen (Seoul, Republic of Korea) and its CLIA laboratory (Rockville, MD, USA), the Broad Institute (Cambridge, MA, USA), and the Garvan Institute of Medical Research (Sydney, Australia).

“The sequencing capacity and economies of scale of the HiSeq X Ten facility will also allow Garvan to accelerate the introduction of clinical genomics and next-generation medicine in Australia,” said Prof. John Mattick, Executive Director of the Garvan Institute of Medical Research.

Eric Lander, founding director of the Broad Institute and professor of biology at MIT, said, “The HiSeq X Ten should give us the ability to analyze complete genomic information from huge sample populations. Over the next few years, we have an opportunity to learn as much about the genetics of human disease as we have learned in the history of medicine.”

“Macrogen will deploy this groundbreaking technology to open a new era of large-scale, whole genome sequencing in our certified CLIA laboratory,” said Dr. Jeong-Sun Seo, Chairman of Macrogen; “Additionally, we will use the HiSeq X Ten to continue our collaboration with the Genomic Medicine Institute of Seoul National University focused on sequencing Asian populations in order to build a genomics database for use in medical research and healthcare applications.”

Related Links:

Illumina



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The test utilizes mtDNA biomarkers to detect molecular signatures associated with endometriosis (Photo courtesy of Shutterstock)

Endometriosis Blood Test Could Replace Invasive Laparoscopic Diagnosis

Endometriosis affects an estimated 1 in 10 women globally, yet diagnosis can take 7 to 10 years on average due to the invasive nature of laparoscopy and lack of accurate, non-invasive tests.... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.