We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New DNA Testing Method Offers Faster and More Accurate Pathogen Identification

By LabMedica International staff writers
Posted on 05 Jun 2024
Print article
Image: The new method offers faster, more accurate pathogen identification, even in complex DNA sequences (Photo courtesy of 123RF)
Image: The new method offers faster, more accurate pathogen identification, even in complex DNA sequences (Photo courtesy of 123RF)

The Polymerase Chain Reaction (PCR) is widely regarded as the definitive method for target DNA sequence amplification, testing, and analysis. In this traditional PCR process, the DNA sample undergoes heating to separate into single strands, which then serve as templates for synthesizing new DNA strands through enzymatic action. Despite its effectiveness, this method can be cumbersome, slow, and costly. Now, researchers have introduced an alternative DNA testing method that could potentially replace traditional PCR, paving the way for broader applications in medical diagnostics.

Developed at Case Western Reserve University (Cleveland, OH, USA), this new technique or reaction is named AMPLON (Amplifying DNA with Multiarm Priming and Looping Optimization of Nucleic Acid). It enables comparison of DNA from diseased cells with that from healthy ones, enhancing understanding of disease progression and treatment approaches. AMPLON uses multiple extensions along the DNA strand, significantly enhancing the speed and accuracy of DNA synthesis at a constant temperature. This simplified method avoids the thermal stress typically imposed on materials by traditional PCR's fluctuating temperatures.

Furthermore, AMPLON offers a more organized and practical amplification method, particularly beneficial in environments where maintaining precise temperature control is difficult. The innovative design of its multi-armed DNA primers turns the limitations associated with enzymatic reactions into advantages, increasing the efficiency of the amplification process and ensuring consistent results. This new technique holds promise for transforming molecular analysis and clinical diagnostics across various fields, including infectious disease diagnostics, personalized medicine, and environmental monitoring. 

“We’ve developed a new method of DNA amplification that does not require bulky lab-bound equipment but can be conducted in one step and in diverse settings. More significantly, our approach does not weaken enzymes like the PCR method,” said Mohamed S. Draz, an assistant professor at Case Western Reserve's School of Medicine and the principal investigator of the study, which was recently published in the journal Advanced Materials. “We’ve been able to enhance amplification and reduce amplification time by 50%. Our approach has the potential to dramatically change the way nucleic acid amplification is performed, providing instead a portable, reliable and cost-effective solution for applications, ranging from point-of-care diagnostics to field-based research.” 

Related Links:
Case Western Reserve University

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.