We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Rapid Detection Technique to Improve Diagnostic Procedure for Bacterial Diseases

By LabMedica International staff writers
Posted on 06 Sep 2023

Lipopolysaccharide (LPS) is a dangerous endotoxin produced by certain bacteria and can trigger harmful immune responses in humans. More...

However, current methods for detecting LPS are slow and complicated. To address this issue, a research team has proposed a system based on a unique fluorescent chemosensor that can detect LPS within minutes, making it ideal for on-site testing in hospitals and pharmaceutical manufacturing facilities.

The COVID-19 pandemic highlighted the need for faster pathogen and toxin screening methods. One such toxin is LPS, which is often referred to as "endotoxins." This molecule is found in the outer membrane of certain bacteria and can be highly harmful, causing fever, inflammation, and even organ failure in severe cases. Surprisingly, despite its prevalence, there are very few effective methods to detect LPS. The current gold standard, the limulus amebocyte lysate (LAL) test, is a manual and time-consuming process that takes several hours and is costly. Other methods for LPS detection are also slow or cumbersome, leading to delays in decision-making in healthcare and pharmaceutical settings. Researchers at Sophia University (Tokyo, Japan) have pioneered a novel approach to rapidly detect LPS in liquid samples. Their new platform has the potential to revolutionize LPS screening.

At the core of this LPS analysis system is a ratiometric fluorescent chemosensor called Zn-dpa-C2OPy. This compound was designed to selectively bind to LPS and exhibits unique fluorescent properties. When not bound to LPS, it forms small spherical vesicles that emit specific-wavelength light upon exposure to UV rays. However, in the presence of LPS, the chemosensor forms complex aggregates with the toxin in the solution. These chemosensor-LPS aggregates emit light at a different wavelength when exposed to UV rays, with their presence further confirmed using spectrometric measurements. To enable high-throughput LPS detection, the researchers combined the chemosensor with a flow injection analysis (FIA) system and a custom dual-wavelength fluorophotometer. This system allows for the easy mixing of a liquid sample with the chemosensor, and the mixture is then analyzed by the fluorophotometer to measure fluorescence changes in response to LPS. By comparing fluorescence intensities, the LPS concentration in the sample can be estimated. One of the major advantages of this system is its speed, as it only takes one minute from sample collection to obtaining results, with the capacity to process 36 samples per hour, making it exceptionally rapid and efficient.

Additionally, the chemosensor-based analysis system is highly sensitive and stable for quantifying LPS, with a detection limit of 11 pM (picomolar), surpassing other reported methods for LPS detection. The system is also simple and animal-friendly, unlike conventional LPS detection methods that use animal resources and may harm them. This makes it an excellent candidate for practical and efficient point-of-care testing for LPS and bacterial contamination in water, clinical, or pharmaceutical samples. With further advancements in this field, the threat of endotoxins can be minimized, enhancing safety in hospitals and improving diagnostic procedures for bacterial diseases.

“Based on this research, an online-endotoxin monitor will be developed and made available for use in real-life situations,” said Takeshi Hashimoto from Sophia University. “Such a monitor could be installed at pharmaceutical production sites, hospital bedsides, and intensive care units to continuously monitor endotoxin concentration in pharmaceutical products, such as water for injection, or the blood of infected patients.”

Related Links:
Sophia University


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
New
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: The VeraBIND Tau assay is a novel blood test that identifies the presence of active tau pathology (Photo courtesy of 123RF)

First Blood-Based Test Measures Key Alzheimer's Biomarker in Asymptomatic and Symptomatic Individuals

Alzheimer’s disease (AD), the sixth leading cause of death in the United States, affects an estimated 7.2 million Americans aged 65 or older. Current diagnostic methods for AD are often invasive, expensive,... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.