We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Stool Tests Rapidly Predict H. pylori Antibiotic Resistance

By LabMedica International staff writers
Posted on 11 Nov 2021
Print article
Image: Scanning Electron Micrograph of Helicobacter pylori: antibiotic resistance can be profiled using next generation sequencing (Photo courtesy of Juergen Berger / Science Photo Library)
Image: Scanning Electron Micrograph of Helicobacter pylori: antibiotic resistance can be profiled using next generation sequencing (Photo courtesy of Juergen Berger / Science Photo Library)
Helicobacter pylori eradication rates have declined in concert with rising antimicrobial resistance worldwide. There is a need for rapid accurate, reliable antibiotic resistance testing, especially in refractory cases.

Culture-based susceptibility testing requires endoscopic gastric biopsy, with resultant inconvenience and costs. Molecular testing using next generation sequencing (NGS) of stool potentially allows rapid prediction of resistance to all six commonly used antimicrobials.

Clinical Scientists at the Rhode Island Hospital (Providence, RI, USA) and their colleagues compared the accuracy of NGS with gastric biopsy for identifying H. pylori antibiotic resistance in 262 patients scheduled for upper endoscopy at four clinical practices. Two gastric biopsies were taken for NGS and a spontaneously passed stool specimen was also obtained within two weeks of endoscopy, but before starting treatment for H. pylori. H. pylori was confirmed in biopsies by PCR followed by NGS. H pylori in stools was confirmed by fecal antigen test and PCR. Stool samples positive by at least two stool tests were also examined by NGS to predict resistance to amoxicillin, clarithromycin, metronidazole, tetracycline, levofloxacin, and rifabutin.

The investigators reported that 73 (29%) patients were H. pylori positive by stool testing; two had insufficient gastric DNA for analysis. Of the 71 evaluable cases identical results for stool and biopsy samples were obtained for all six antibiotics in 65 (91.5%). In six cases there was mismatch between gastric and stool results; in four cases this was due to one antibiotic-associated mutation difference. For 70.4% of gastric biopsies, there was at least one resistance-associated mutation. Only 21 (29.6%) had no mutations. Results for stool were similar: 50 cases (68.5%) had at least one resistance-associated mutation and 23 (31.5%) had no mutations. The concordance between stool and gastric biopsies for individual antibiotics ranged from 89% (metronidazole) to 100%.

Steven Moss, MD, a gastroenterologist and senior author of the study, said, “Culture-based susceptibility testing requires endoscopic gastric biopsy, with resultant inconvenience and costs. It is now possible to rapidly obtain susceptibility data without endoscopy.”

The authors concluded that profiling H. pylori antibiotic resistance by NGS from stool samples provides rapid results highly comparable to those obtained from gastric biopsies. Using NGS to determine H. pylori antibiotic resistance using stool obviates the cost, inconvenience and risks of endoscopy for patients in whom resistance profiling is needed. The study was presented at the 2021 Virtual Meeting of the American College of Gastroenterology (ACG) held October 22-27, 2021.

Related Links:
Rhode Island Hospital

Gold Supplier
Molecular Diagnostic System
Singuway 9600 Pro
Gold Supplier
Multifuge X4 Pro Centrifuge Series
Laboratory Automation System
SARS-CoV-2 Antigen Immunofluorescence System
Watmind SARS-CoV-2 Antigen Immunofluorescence System

Print article



view channel
Image: The Gazelle Hb Variant Test for screening, diagnosis and management of sickle cell disease and related hemoglobinopathies at the point of care (Photo courtesy of Hemex Health)

Point-of-Care Device Accurately Rapidly Diagnoses Sickle Cell Disease

Hemoglobinopathies are the most common autosomal hereditary disorders. Approximately 7% of the global population carries hemoglobin gene mutation including structural hemoglobin variants like sickle hemoglobin... Read more


view channel
Image: The IMMULITE 2000 XPi Immunoassay System provides multiple tests on a single, easy-to-use analyzer, including the thyroid-stimulating immunoglobulin assay (Photo courtesy of Siemens Healthcare)

Immunoassays Evaluated for Thyroid-Stimulating Receptor Antibody in Graves’ Disease

Graves' disease (GD), also known as toxic diffuse goiter, is an autoimmune disease that affects the thyroid. It frequently results in and is the most common cause of hyperthyroidism and it also often results... Read more


view channel
Image: The sciREADER CL2 enables high quality digital colorimetric imaging of various support formats (Photo courtesy of SCIENION)

Multiplex Immunoassay Developed for Confirmation and Typing of HTLV Infections

Human T-Cell Lymphotropic Viruses (HTLV) type 1 and type 2 account for an estimated five to 10 million infections worldwide and are transmitted through breast feeding, sexual contacts and contaminated... Read more


view channel

AI Accurately Detects and Diagnoses Colorectal Cancer from Tissue Scans As Well or Better Than Pathologists

Artificial intelligence (A) can accurately detect and diagnose colorectal cancer from tissue scans as well or better than pathologists, according to a new study. The study, which was conducted by researchers... Read more


view channel
Image: PKeye Workflow Monitor System (Photo courtesy of PerkinElmer, Inc.)

PerkinElmer’s New Cloud-Based Platform Enables Laboratory Personnel to Remotely Manage Its Instruments in Real-Time

PerkinElmer, Inc. (Waltham, MA; USA) has launched its PKeye Workflow Monitor, a cloud-based platform enabling laboratory personnel to remotely manage and monitor their PerkinElmer instruments and workflows... Read more


view channel

Global Point of Care Diagnostics Market to Top USD 35 Billion by 2027 Due to Rising Diabetic Cases

The global point of care diagnostics market is projected to grow at a CAGR of close to 6% from more than USD 23 billion in 2020 to over USD 35 billion by 2027, driven by an increase in the number of diabetic... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.