We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Buruli Ulcer Pathogen Detected by Isothermal RPA Assay

By LabMedica International staff writers
Posted on 28 Feb 2019
Print article
Image: The T8 Isothermal Diagnostics Instrument provides quantitative and qualitative results for molecular diagnostic isothermal assay applications (Photo courtesy of Axxin).
Image: The T8 Isothermal Diagnostics Instrument provides quantitative and qualitative results for molecular diagnostic isothermal assay applications (Photo courtesy of Axxin).
Buruli ulcer (BU) is a neglected tropical disease caused by Mycobacterium ulcerans. The pathogenesis of BU is linked to the production of a polyketide toxin known as mycolactone, which is cytotoxic and has immunomodulatory properties and presents as nodules, plaques, ulcers and edema.

Nucleic acid amplification of insertion sequence IS2404 by polymerase chain reaction (PCR) is the most sensitive and specific method to detect M. ulcerans, the causative agent of BU. However, PCR is not always available in endemic communities in Africa due to its cost and technological sophistication. Microscopy for acid fast bacilli and culture for M. ulcerans have low sensitivity and histopathology is rarely available in endemic areas.

A team of scientists associated with the Kwame Nkrumah University of Science and Technology (Kumasi, Ghana) evaluated the clinical performance of the M. ulcerans (Mu-RPA) assay was evaluated using DNA extracted from fine needle aspirates or swabs taken from 67 patients in whom BU was suspected and 12 patients with clinically confirmed non-BU lesions. The team developed an isothermal DNA amplification system using the recombinase polymerase amplification (RPA) method.

All samples were tested with both the real-time PCR and the Mu-RPA assay to determine the clinical sensitivity and specificity of the assay using real-time PCR as the reference test. In the case of real-time RPA detection, TwistAmp Exo “Improved Formulation” kit was used. Fluorescence detection at 570 nm for FAM channel was measured and a threshold set by increasing the fluorescence above the three standard deviations over the background detected in the first minute of incubation. The team programmed the T8- fluorometer using the T8-ISO Desktop application to detect the lowest dilutions that met criteria for distinguishing positive samples from negative controls based on serial dilutions of the molecular standard.

The scientists tested all samples by both RPA and real-time PCR and 58 of these samples were confirmed by PCR as BU. Of the 58 confirmed cases, 51 were correctly identified by the RPA assay with seven false negative results giving a sensitivity of 88%. The 21 PCR negative samples were all negative by RPA, specificity of 100% and a 100% positive predictive value (PPV) with a Youden’s index of 88%. When the analysis was stratified by type of sample, the sensitivity and specificity of the RPA for swabs in comparison to PCR were 92% and 100% respectively with a 100% PPV. Similarly, the sensitivity and specificity of FNA samples were 82% and 100% respectively.

The authors concluded that the developed real-time RPA assay for the rapid and accurate detection of M. ulcerans DNA with high sensitivity, specificity and reproducibility was comparable to real-time PCR. It was significantly faster than available real-time PCR methods for detecting M. ulcerans with a run time of 15 minutes, compared to almost two hours for real-time PCR. Potentially the Mu-RPA can be used in a low resource setting closer to the patients when combined with a fast DNA extraction method. The study was published on February 1, 2019, in the journal PLOS NTD.

Related Links:
Kwame Nkrumah University of Science and Technology

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.