We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Rapid Method Developed to Identify Bacteria in Blood Samples

By LabMedica International staff writers
Posted on 23 Feb 2017
In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. More...
Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care.

A desktop diagnosis tool has been developed that detects the presence of harmful bacteria in a blood sample in a matter of hours instead of days. The tool was made possible by a combination of proprietary chemistry, innovative electrical engineering and high-end imaging and analysis techniques powered by machine learning.

Bioengineers at the University of California San Diego extracted and purified blood from a clinical sample known to be negative for bacteria. Approximately 2,000 genomes of Listeria monocytogenes were added to the purified blood extraction. The maximum amount of the blood and bacterial DNA mixture (8.63 μL) was added to the polymerase chain reaction (PCR) master mix. The DNA was then placed on a digital chip that allowed each piece to independently multiply in its own small reaction. For the process to work at such small scales, each well containing DNA in the chip was only 20 pL in volume.

An MJ Research PTC-200 Thermal Cycler was used for endpoint amplification. The engineers imaged the melting process with the high-throughput microscope and fluorescent imaging was accomplished using a Nikon Eclipse Ti platform and they were able to capture the bacteria's melting curves. They then analyzed the curves with a machine-learning algorithm they developed. In previous work, the algorithm was trained on 37 different types of bacteria undergoing different reactions in different conditions. The scientists showed that it was able to identify bacteria strains with 99% and by contrast, the error rate for traditional methods can be up to 22.6%.

The team concluded that the resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR high-resolution melting (HRM) approaches. The study was published on February 8, 2017, in the journal Scientific Reports.


Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
Portable Electronic Pipette
Mini 96
ESR Analyzer
TEST1 2.0
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.