We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




DNA-Based Droplet System Rapidly Detects Bacterial Infection in the Bloodstream

By LabMedica International staff writers
Posted on 23 Nov 2014
A new test for bacterial infection in the bloodstream is based on an innovative DNA labeling and particle counting system.

Investigators at the University of California, Irvine (USA) recently described a new technology termed "Integrated Comprehensive Droplet Digital Detection" (IC 3D) that can selectively detect bacteria directly from milliliters of diluted blood. More...
IC 3D is a one-step, culture- and amplification-free process that provides results with single-cell level sensitivity in from ninety minutes to four hours.

The IC 3D instrument converts blood samples into billions of minute droplets. Fluorescent DNA sensor solution infused into the droplets detects those with bacterial markers, marking them with an intense fluorescent signal. Separating the samples using real-time, DNAzyme-based sensors, droplet microencapsulation, and a high-throughput 3D particle counter system minimizes the interference of other components in blood, making it possible to directly detect target bacteria without the purification typically required in conventional assays.

Using Escherichia coli as a target, the investigators demonstrated that the IC 3D system could provide absolute quantification of both stock and clinical isolates of E. coli in spiked blood within a broad range of extremely low concentration from one to 10,000 bacteria per milliliter with exceptional robustness and limit of detection in the single digit range.

“We are extremely excited about this technology because it addresses a long-standing unmet medical need in the field,” said senior author Dr. Weian Zhao, assistant professor of pharmaceutical sciences at the University of California, Irvine. “As a platform technology, it may have many applications in detecting extremely low-abundance biomarkers in other areas, such as cancers, HIV and, most notably, Ebola.”

The study was published in the November 13, 2014, online edition of the journal Nature Communications.

Related Links:

University of California, Irvine



Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
ESR Analyzer
TEST1 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Neuron-derived extracellular vesicles carry many biomarker candidates for Alzheimer’s (S Chinnathambi et al., Brain Network Disorders (2025). doi.org/10.1016/j.bnd.2024.12.006)

Neuron-Derived Extracellular Vesicles Could Improve Alzheimer’s Diagnosis

Alzheimer’s disease is becoming increasingly common as global populations age, yet effective treatments for advanced stages remain limited. Early detection is therefore critical, but current diagnostic... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.