We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

BIO-RAD LABORATORIES

Provides full range of instrumentation, reagent kits, software and quality control systems to clinical laboratories. ... read more Featured Products: More products

Download Mobile App




Mobile DNA Test Developed for HIV

By LabMedica International staff writers
Posted on 19 Jun 2014
Print article
Image: The Twista portable real-time fluorometer (Photo courtesy of TwistDx Ltd).
Image: The Twista portable real-time fluorometer (Photo courtesy of TwistDx Ltd).
Image: ESEQuant Tube Scanner for the measurement of fluorescence in tubes in point-of-need applications (Photo courtesy of Qiagen).
Image: ESEQuant Tube Scanner for the measurement of fluorescence in tubes in point-of-need applications (Photo courtesy of Qiagen).
An efficient test to detect signs of human immunodeficiency virus (HIV) and its progress in patients in low-resource settings is being developed using recombinase polymerase amplification (RPA).

The current gold standard to diagnose HIV in infants and to monitor viral load depends on laboratory equipment and technical expertise generally available only in clinics, while the new assay features a nucleic acid-based test that can be performed at the site of care.

Bioengineers at Rice University (Houston, TX, USA) developed a new technique that would replace a complex procedure based on polymerase chain reaction (PCR) with one that relies on RPA, a method that quickly amplifies genetic markers found in blood to levels where they can be easily counted. In the test the team calls quantitative RPA (qRPA), a specific sequence in HIV DNA is targeted and tagged with fluorescent probes that can be seen and quantified by a portable machine. Software analysis of the fluorescing DNA allows clinicians to determine with great accuracy whether the virus is present in a patient's blood and/or how much is there.

Amplification and real-time data collection were performed in a CFX96 Real Time qPCR machine (Bio-Rad; Hercules, CA, USA). Preliminary RPA experiments detecting HIV-1 DNA and internal positive control sequence (IPC) DNA in separate reactions demonstrated that the time at which detectable amplification begins, increases with decreasing DNA concentration, suggesting that quantification of DNA with RPA is feasible. The assay could potentially be optimized for greater accuracy by collecting fluorescence data more frequently or decreasing the reaction rate by either decreasing the concentration of magnesium acetate in the reaction or amplifying at a lower temperature.

This assay was designed for use with an inexpensive, point-of-care fluorescence reader, such as the commercially available Twista portable real-time fluorometer (TwistDx, Ltd.; Cambridge, UK) or the ESEQuant Tube Scanner (Qiagen; Valencia, CA, USA). To be clinically viable, a DNA-based test for HIV has to be able to quantify virus loads over four orders of magnitude, from very low to very high; the scientists reported that the qRPA test easily meets that goal. The study was published on May 26, 2014, in the journal Analytical Chemistry.

Related Links:

Rice University
Bio-Rad
TwistDx Ltd.



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
H-FABP Assay
Heart-Type Fatty Acid-Binding Protein Assay
New
Alpha-Fetoprotein Reagent
AFP Reagent Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.