We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type

By LabMedica International staff writers
Posted on 10 Apr 2025

Lung adenocarcinoma, the most common form of non-small cell lung cancer (NSCLC), typically adopts one of six distinct growth patterns, often combining multiple patterns within a single tumor. More...

A global grading system developed by the International Association for the Study of Lung Cancer (IASLC) links these growth patterns to the likelihood of disease progression or recurrence. However, the presence of multiple pattern types within a tumor and the variation in how each pattern appears across different tumors complicates the task of determining a patient's prognosis. This complexity, coupled with the challenge of defining and quantifying these growth patterns, often leads to discrepancies in tumor grading among pathologists. As a result, inconsistent or suboptimal grading could result in patients receiving inadequate or inappropriate treatment, which might compromise their outcomes. Although previous studies have explored the use of deep learning models for classifying growth patterns in lung adenocarcinoma, these models have typically not considered the detailed morphological structure of the patterns, nor have they been capable of performing automated IASLC grading.

In response to this challenge, researchers at the Institute of Cancer Research (ICR, London, UK) have developed an artificial intelligence (AI)-based model designed to help pathologists grade lung cancer tumors and predict patient outcomes by analyzing tumor growth patterns, which can vary greatly among individuals. In a recent study, the ICR team demonstrated that the model, named ANORAK (pyrAmid pooliNg crOss stReam Attention networK), was able to predict disease-free survival (DFS), a critical measure of the length of time between treatment for lung adenocarcinoma and the return of symptoms or signs of the disease. In the long term, the model could assist clinicians in determining the most effective treatment strategies based on the predicted progression of cancer. This improved decision-making could ultimately lead to better patient outcomes, especially in light of recent advancements in cancer screening programs that have led to more early-stage lung cancer diagnoses, underscoring the need for enhanced treatment decisions. The research, conducted by ICR scientists, was published in Nature Cancer.

In this study, the researchers used ANORAK to assess six types of lung adenocarcinoma growth patterns at the pixel level. They applied the model to 5,540 tumor samples from diagnostic slides, which came from 1,372 patients with the disease. The model proved effective in enhancing patient risk stratification, showing that those with IASLC grade 1 or 2 tumors had significantly longer DFS than those with grade 3 tumors. To validate the AI grading, the researchers compared it to manual grading results from three pathologists. They found that ANORAK’s grading was consistent with the pathologists' assessments, even slightly outperforming them for one cohort of patients. By referencing previous studies, the team confirmed that the agreement between AI and manual grading on the predominant growth pattern of a tumor was comparable to the level of agreement typically seen between different pathologists.

The study concluded that AI grading adds significant prognostic value, especially in early-stage lung adenocarcinoma, where treatment decisions are often challenging. In the second phase of the study, the researchers examined four specific scenarios that are typically difficult for pathologists, including cases with multiple diagnostic slides per tumor and those with highly diversified growth patterns. ANORAK performed well in all four scenarios, demonstrating its potential to assist pathologists even in complex cases. Additionally, the researchers focused on the acinar pattern, the most common of the six growth patterns, using ANORAK to better understand its structures and shapes. They also identified correlations between different acinar subtypes and tumor characteristics, some of which were associated with poorer prognoses. Moving forward, the researchers plan to incorporate genetic data into their model to gain deeper insights into tumor progression and the influence of surrounding cells and tissues. The team also intends to test ANORAK on larger groups of early-stage lung adenocarcinoma patients to gather more evidence of its effectiveness.

“Diagnostic inaccuracies and variability among pathologists are longstanding issues in lung adenocarcinoma. Our study is the first to implement the IASLC grading system with an AI-powered tool and validate the prognostic values on two distinct cohorts,” said Dr. Xiaoxi Pan, then a Postdoctoral Training Fellow in ICR’s Computational Pathology and Integrative Genomics Group and first author. “Our AI method enables the precise and automated quantification of unique growth patterns within a tumor, thereby inferring the predominant pattern and grading. It has also identified previously undiscovered morphological and spatial features of certain tissues that were not achievable using existing algorithms or human observations.”

Related Links:
ICR


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Hemodynamic System Monitor
OptoMonitor
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.