We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Wearable Microscopes Offer Insight into Inaccessible Spinal Cord Regions

By LabMedica International staff writers
Posted on 22 Mar 2023
Print article
Image: Wearable microscopes advance spinal cord imaging in mice (Photo courtesy of Salk Institute)
Image: Wearable microscopes advance spinal cord imaging in mice (Photo courtesy of Salk Institute)

In the overall regulation of crucial functions from breathing to movement, the spinal cord acts as a messenger that transmits signals between the brain and the body. However, technology has hindered scientists' understanding on a cellular level of how the spinal cord relays pain signals. Now, scientists have developed wearable microscopes that offer unprecedented insight into the signaling patterns that occur within the spinal cords of mice. This technological breakthrough will significantly improve researchers' understanding of the neural basis of movement and sensations in both healthy and disease contexts, like chronic pain, itch, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS).

The wearable microscopes created by scientists at The Salk Institute For Biological Studies (La Jolla, CA, USA) having a width of approximately seven to fourteen millimeters, comparable to the size of a human spinal cord or little finger, provide real-time, high-resolution, high-contrast, and multicolor imaging of previously inaccessible areas of the spinal cord. The wearable microscope can work in tandem with a microprism implant, consisting of a tiny reflective glass element placed next to the tissue regions of interest.

Utilizing these state-of-the-art microscopes, the scientists sought new information about the central nervous system. Specifically, they aimed to capture images of astrocytes, star-shaped, non-neuronal glial cells, present in the spinal cord. Previous studies conducted by the team indicated that astrocytes play an unexpected role in pain processing. The findings showed that squeezing the tails of mice triggered the activation of astrocytes, sending coordinated signals across spinal cord segments. Such unprecedented visualization of astrocyte activity and any cellular activity in moving animal's spinal cord regions was unachievable before the new microscopes were invented. The team has already kick-started experiments exploring how different pain conditions alter neuronal and non-neuronal activity in the spinal cord and how abnormal cell activity can be controlled by various treatments.

“These new wearable microscopes allow us to see nerve activity related to sensations and movement in regions and at speeds inaccessible by other high-resolution technology,” said senior author Axel Nimmerjahn, associate professor and director of the Waitt Advanced Biophotonics Center. “Our wearable microscopes fundamentally change what is possible when studying the central nervous system.”

“Being able to visualize when and where pain signals occur and what cells participate in this process allows us to test and design therapeutic interventions,” added Daniela Duarte, co-first author of one of the studies. “These new microscopes could revolutionize the study of pain.”

Related Links:
Salk Institute

New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test
New
Ultra-Low Temperature Freezer
iUF118-GX

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: Karius Focus BAL is designed to quickly identify the etiology of lung infections and improve diagnostic yield over standard of care testing (Photo courtesy of Karius)

Microbial Cell-Free DNA Test Accurately Identifies Pathogens Causing Pneumonia and Other Lung Infections

Bronchoalveolar lavage (BAL) is a commonly used procedure for diagnosing lung infections, especially in immunocompromised patients. However, standard tests often fail to pinpoint the exact pathogen, leading... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.