We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Acute Lymphoblastic Leukemia Risk Linked to Genetically Mediated Increase in Lymphocytes

By LabMedica International staff writers
Posted on 15 Sep 2021
Print article
Image: Acute lymphoblastic leukemia: bone marrow aspirate smear reveals increased blasts which are small to medium in size with high nuclear-to-cytoplasmic ratios, round to irregular nuclei, smooth chromatin, and scant basophilic agranular cytoplasm. Some background maturing myeloid cells are also present in this case (Photo courtesy of Karen M. Chisholm, MD, PhD)
Image: Acute lymphoblastic leukemia: bone marrow aspirate smear reveals increased blasts which are small to medium in size with high nuclear-to-cytoplasmic ratios, round to irregular nuclei, smooth chromatin, and scant basophilic agranular cytoplasm. Some background maturing myeloid cells are also present in this case (Photo courtesy of Karen M. Chisholm, MD, PhD)
Acute lymphoblastic leukemia (ALL) is a cancer of the lymphoid line of blood cells characterized by the development of large numbers of immature lymphocytes. As an acute leukemia, ALL progresses rapidly and is typically fatal within weeks or months if left untreated.

ALL is the most common cancer among children under 15 years old and is thought to develop under a two-hit model, under which a preleukemic clone develops in utero and a second somatic mutation then spurs the development of leukemia. While some genetic risk loci linked to ALL include variants in genes that have also been associated with hematopoiesis, lymphoid development, and blood-cell traits.

Genetic Epidemiologists at the University of Southern California (Los Angeles, CA, USA) and their colleagues investigated the etiological relevance of dysregulated blood-cell homeostasis in a genome-wide association study (GWAS) of childhood ALL (2,666 affected individuals, 60,272 control individuals) and a multi-trait GWAS of nine blood-cell indices in the UK Biobank. They examined blood cell traits such as lymphocyte, platelet, and neutrophil counts, as well as neutrophil-to-lymphocyte ratios and platelet-to-lymphocyte ratios.

The investigators reported that about 3,000 genetic variants were associated with one or more of these hematological traits and explained between 4% and nearly 24% of the variation in those traits. Additionally, 115 loci were linked to blood-cell ratios. They uncovered positive correlations between increased lymphocyte counts, lymphocyte-to-monocyte ratio, and neutrophil levels with ALL risk, and an inverse correlation between a higher platelet-to-lymphocyte ratio and ALL risk.

A clustering analysis identified two putative novel ALL risk variants from among those associated with blood cell traits, one on chromosome 2q22.1 and one within the FLT3 gene on 13q12.2. The scientists noted that variants within FLT3 have recently been linked to an increased risk of autoimmune thyroid disease and acute myeloid leukemia (AML). The allele linked to both ALL and AML risk lead to a truncated FLT3 protein, but an increase in FLT3 ligand levels. While this variant has a greater effect on the development of myeloid cells, they said it could also affect ALL risk through its activation of the RAS/MAPK pathway.

The authors concluded that their study showed that a genetically induced shift toward higher lymphocyte counts, overall and in relation to monocytes, neutrophils, and platelets, confers an increased susceptibility to childhood ALL. The study was published on August 31, 2021 in the American Journal of Human Genetics.

Related Links:
University of Southern California

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.