We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




AI-Powered H&E Analyzer Predicts Immunotherapy Treatment Outcomes in Lung Cancer

By LabMedica International staff writers
Posted on 07 Sep 2023
Print article
Image: Tertiary lymphoid structures analysis has shown potential as an emerging biomarker for lung cancer treatment (Photo courtesy of 123RF)
Image: Tertiary lymphoid structures analysis has shown potential as an emerging biomarker for lung cancer treatment (Photo courtesy of 123RF)

A groundbreaking study has demonstrated that artificial intelligence (AI) analysis of Tertiary Lymphoid Structures (TLS) in tumors can predict treatment response in patients with non-small cell lung cancer (NSCLC).

The study explored the use of Lunit’s (Seoul, South Korea) Lunit SCOPE IO, an AI-powered Hematoxylin and Eosin (H&E) analyzer designed to identify TLS in the tumor microenvironment (TME), to predict the outcomes of immunotherapy in lung cancer cases. Lunit SCOPE is a suite of AI-driven software that analyzes digital pathology images of tissue slides and aids in the development of AI biomarkers. It aims to enhance workflows and provide clinicians and researchers with more precise and anticipatory clinical data. Lunit SCOPE IO was created using a vast dataset of H&E-stained whole-slide images sourced from 18 different cancer types across the world. The platform encompasses various AI-based tissue analysis tools and assays intended to optimize digital pathology workflows, diagnostics, and drug development. Lunit SCOPE IO assesses the TME using H&E analysis and delivers AI-driven prognostic clinical outcome insights. Additionally, AI-fueled Immunohistochemistry (IHC) slide analysis services are available, including Lunit SCOPE PD-L1, Lunit SCOPE HER2, Lunit SCOPE ER/PR, and others.

The new study builds on earlier research findings indicating that the presence of TLS could function as a predictive marker for the efficacy of immuno-oncology treatment. The study analyzed a cohort of 85 NSCLC patients who were administered immune checkpoint inhibitors (ICI). The results revealed that leveraging Lunit SCOPE IO for TLS assessment established clinically substantial correlations with patients' overall survival (OS). Notably, among the patients with detected TLS, 25 exhibited significantly extended overall survival compared to the 60 patients without TLS. This correlation persisted irrespective of PD-L1 expression, a recognized biomarker for treatment response in NSCLC patients. These findings underscore the potential of AI-guided TLS analysis as a biomarker to forecast treatment response in individuals with NSCLC.

"Through rigorous collaboration and cutting-edge technology, our study illuminates a promising path toward better predicting lung cancer treatment outcomes,” said Brandon Suh, CEO of Lunit. “The potential of TLS analysis via Lunit SCOPE IO in predicting immunotherapy response represents a meaningful step forward in better understanding cancer biology, and making AI analysis of the TME an actionable part of cancer care."

Related Links:
Lunit

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Hemoglobin Testing System
VARIANTnbs

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.