We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Different Clinical Hematology Lab Configurations Compared

By LabMedica International staff writers
Posted on 22 Apr 2019
Print article
Image: The CellaVision DM96 digital cell morphology system is designed to automate the time-consuming, manual effort associated with traditional microscopy (Photo courtesy of CellaVision).
Image: The CellaVision DM96 digital cell morphology system is designed to automate the time-consuming, manual effort associated with traditional microscopy (Photo courtesy of CellaVision).
Automated hematology analyzers are key clinical laboratory instruments that measure blood counts, identify subsets of nucleated blood cells, and flag specimens for further manual analysis. These analyzers range in price and functionality.

Examination of stained blood smears may be performed with a microscope or may be semi-automated with digital image analysis systems. The performance and costs of currently available analysis configurations with special focus on a proposed alternative using a minimal hematology analyzer plus a digital imaging device, allowing for remote oversight and interpretation has been compared.

Medical Laboratory scientists at the University of California, San Diego (La Jolla, CA, USA) and their colleagues used patient samples with orders for complete blood counts (CBCs) with white blood cell (WBC) differentials. During a 6-week period, a total of 206 blood samples were selected to represent a variety of clinical conditions, including samples with no abnormalities. The team wanted to determine whether low-volume laboratories might realize savings while gaining function by substituting commonly used configurations with a proposed alternative.

The investigators evaluated the performance of the proposed alternative configuration, blood counts with automated differentials produced by a Sysmex XE5000 (complete blood count reference method) were compared with cell counts from the Sysmex pocH-100i, CellaVision DM96 preclassified differentials, and DM96 reclassified differentials (differential reference method) by using standard regression analyses, 95% CIs, and truth tables. Financial cost modeling used staffing practices, test volumes, and smear production rates observed at remote clinics performing on-site hematology analysis.

The team reported that differential blood count parameters showed excellent correlation between the XE5000 and preclassification DM96. For blasts/abnormal cells, immature granulocytes, and nucleated red blood cells, the DM96 showed higher sensitivity and similar specificity to the XE5000. Cost modeling revealed that decreased personnel costs through remote monitoring of results facilitated by the DM96 would lead to lower operational costs relative to more conventional analysis configurations.

The authors concluded that the adoption of hematology analysis configurations including the CellaVision system at clinical sites with low to moderate daily testing volume (i.e., fewer than 100 tests per day) will likely lead to decreased costs, more efficient personnel utilization, and improved overall service (for example, decreased turnaround time and increased accuracy) as compared to configurations using either simple or complex hematology analyzers. The study was published on April 10, 2019, in the journal Archives of Pathology & Laboratory Medicine.

Related Links:
University of California, San Diego

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.