We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





RNA Reference Materials Useful for Standardizing COVID-19 Tests, Finds Study

By LabMedica International staff writers
Posted on 24 Jan 2022

A new study has shown that RNA reference materials are useful for standardizing COVID-19 tests. More...

The multiorganizational study led by researchers at the National Institute of Standards and Technology (NIST; Gaithersburg, MD, USA) looked at anchoring cycle threshold (Ct) values to a reference sample with known amounts of the virus in an effort to make the COVID-19 tests results more comparable between labs.

Scientists track and monitor the circulation of SARS-CoV-2, the virus that causes COVID-19, using methods based on a laboratory technique called polymerase chain reaction (PCR). Also used as the “gold standard” test to diagnose COVID-19 in individuals, PCR amplifies pieces of DNA by copying them numerous times through a series of chemical reactions. The number of cycles it takes to amplify DNA sequences of interest so that they are detectable by the PCR machine, known as Ct, is what researchers and medical professionals look at to detect the virus. However, not all labs get the same Ct values.

SARS-CoV-2 is an RNA virus: Its genetic material is single-stranded instead of double-stranded like DNA and contains some different molecular building blocks, namely uracil in place of thymine. But the PCR test only works with DNA, and labs first must convert the RNA to DNA to screen for COVID-19. For the test, RNA is isolated from a patient’s sample and combined with other ingredients, including short DNA sequences known as primers, to transform the RNA into DNA. When running a PCR test, labs often use the Ct value to make a positive or negative diagnosis of COVID-19. Labs often set a “cutoff” Ct value above which they interpret and can declare a patient “negative” if the virus is not detected after a certain number of cycles. But even though different labs can accurately detect the virus using their PCR tests, they use their own test methods and instruments, which could lead to different Ct values.

So, for this study, a multiorganizational research team set out to explore how much Ct values could vary among different labs when they ran PCR tests on the same reference samples containing known amounts of the SARS-CoV-2 virus. Two reference materials with carefully measured concentrations of the SARS-CoV-2 RNA were developed by a group of organizations and institutions. RM 1 had an estimated viral load of 10 million (107) copies per milliliter, and RM 2 had an estimated viral load of one million (106) copies per milliliter.

To ensure these values were accurate, metrology institutes measured and validated the reference materials using digital PCR. Digital PCR follows the same steps as traditional PCR but is a more advanced version. In digital PCR, the sample is partitioned into thousands of tiny droplets. A compound is also added so when the targeted DNA is detected it gives off a glow, allowing researchers to confirm if the sample is positive for the coronavirus with the presence of the fluorescent molecules.

The reference materials were sent out to a total of 305 laboratories in Germany, which yielded 1,109 data sets to be analyzed. The Ct values differed between labs depending on the test system or PCR equipment used and the targeted DNA sequences of the virus. For example, PCR assays aiming to detect a key gene (the “N” gene) in the COVID-19 virus had a range of Ct values between 17.6 and 26.9 for RM 1, while for RM 2 the range was between 20.7 and 30.1. The ranges between the two RMs overlap (20.7 to 26.9) even though they have different viral load concentrations, which shows it’s not possible to tell the precise concentration from Ct values alone.

The differences in Ct values among labs showed the usefulness of reference materials as a tool to help labs compare and standardize their results. Some have previously viewed the Ct value as a way to measure the viral load, the amount of virus in a person’s body. But the variation in Ct values across labs underscores that the two variables are merely correlated with one another. For example, if an individual has a higher viral load, then their Ct value would be low because it would take fewer cycles to amplify the virus’s genetic material. However, by using the appropriate reference materials, Ct values can potentially be converted to an actual virus concentration value in copies per microliter, which would be one way to quantify the viral load, though this wasn’t a focus of the study

Some have also suggested using Ct values to determine how infectious a patient is, another practice that the researchers caution against. Even though Ct values alone don’t determine how sick or infected an individual is, understanding these values could help inform decisions on setting criteria for monitoring people affected by the coronavirus. And RNA reference materials can help make these results more reliable and comparable.

“A lower Ct value means more DNA with the coronavirus starting out in the sample. It correlates to the viral load. But Ct can vary depending on the extraction material or the method used. All of these things can affect at which point the DNA is detected,” said NIST researcher Megan Cleveland, a co-author of the study. “People should use well-characterized reference materials along with their test methods instead of just relying on the Ct values. On its own, the Ct values are not easily comparable between testing laboratories, but researchers having access to reference materials and understanding their importance is beneficial.”

Related Links:
NIST


Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Clostridium Difficile Toxin A+B Combo Card Test
CerTest Clostridium Difficile Toxin A+B
New
Silver Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.