We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics

Download Mobile App

New COVID-19 Assay Proves as Reliable as Laboratory PCR Test and Ideal for Inexpensive POC Diagnosis

By LabMedica International staff writers
Posted on 04 Jan 2022
Print article

A potential at-home COVID-19 test is just as good as laboratory PCR tests, according to preclinical data.

Researchers at the University of Illinois Chicago (Chicago, IL, USA) have designed a high-quality assay that can be used in at-home tests for rapid COVID-19 screening. Results from an early preclinical study suggest that tests with the new assay may be just as reliable as the laboratory-based molecular tests - called PCR tests - used by hospitals for clinical diagnostics.

Assay reagents create a chemical reaction when mixed with a biological sample containing a virus or other marker. For example, an at-home pregnancy test consists of assay reagents that react to pregnancy hormones in a urine sample. In laboratory molecular tests, scientists mix samples with assay reagents in a highly controlled process. Because the reaction conditions (like temperature) are tightly controlled, the tests are both sensitive and selective, meaning the chance of false positives or false negatives is very low. However, these laboratory tests can be expensive and are not accessible in all communities and field settings. The challenge with at-home and field tests is that they need assay reagents to work under less controlled conditions, which increases the chances for false results or inconclusive tests.

One method, called loop-mediated isothermal amplification (LAMP), which uses six DNA primers for pathogen detection, has shown promise for other pathogens, like malaria, but has not been efficiently applied to COVID-19. The UIC researchers who developed the new COVID-19 assay first created and applied a bioinformatics algorithm to identify the best potential DNA primer combinations for reliably detecting SARS-CoV-2, the virus that causes COVID-19, with the LAMP method. Then, the researchers ran a series of simulations to optimize the conditions under which the potential DNA primer combinations worked best in the field environments.

After using their analysis to develop a testing method using the DNA primers and conditions, the team designed experiments to see how the test performed. In experiments, the researchers processed artificial samples and human samples with a standard PCR test and with their new test. When the results were compared, the researchers not only saw significant improvement in the efficiency of their test over others using the LAMP method to detect the virus but also that it was comparable to more expensive gold standard PCR tests. The researchers concluded that the new LAMP assays were as effective as standard PCR assays in SARS-CoV-2 detection and that their new assays have unique advantages, like speed and direct detection of viral RNA in saliva, that make the test “ideal for inexpensive point-of-care diagnosis.”

The lab-based study showed that their test works, but the researchers will need to validate the test in further studies with a greater number of samples from real patients. They hope that by summer they will have conducted a study including about 1,500 patient samples. If the study validates the test, the data will be submitted with an application to U.S. Food and Drug Administration for Emergency Use Authorization.

“Having fast and easy-to-use tests for COVID-19 is critical, especially in the communities that have low rates of vaccination and low access to health care services, including COVID-19 surveillance and diagnostic testing,” said Xiaowei Wang, UIC professor of pharmacology and bioengineering. “The current crisis has created an unprecedented need for rapid tests that are highly sensitive and the sooner we can develop better technology and testing options, the better it will be for everyone.”

Related Links:
University of Illinois Chicago 

Gold Supplier
SARS-CoV-2/Flu A/B & RSV Test
RespiBio Panel 3 (RBRP3)
Tube Handler
BioMicroLab XL20
5-Part Differential Hematology Analyzer
Abacus 5
POC Clinical Chemistry Analyzer

Print article
IIR Middle East


Molecular Diagnostics

view channel
Image: The ultrarapid genome sequencing pipeline, indicating all processes from sample collection to a diagnosis. Vertically stacked processes are run in parallel (Photo courtesy of Stanford University)

Ultrarapid Nanopore Genome Sequencing in a Critical Care Setting

A genetic diagnosis can guide clinical management and improve prognosis in critically ill patients, and much effort has gone into developing methods that result in rapid, reliable results.... Read more


view channel
Image: My Qualiris QC (Photo courtesy of Stago)

Stago Launches New My Qualiris QC Website for Brand-New User Experience

Stago (Paris, France) has launched its new My Qualiris QC website which provides a brand-new user experience with a 24/7 accessible web-application where the results of a user’s network are only a few clicks away.... Read more


view channel

Global Immunofluorescence Assay (IFA) Market to Surpass USD 4 Billion by 2028 Due to Growing Burden of Infectious Diseases

The global immunofluorescence assay (IFA) market is expected to reach USD 4.01 billion by 2028, driven by the increasing global healthcare burden of chronic and infectious diseases, rising application... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.