We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App





Machine Learning Tools for COVID-19 Patient Screening Discussed at AACC 2021

By LabMedica International staff writers
Posted on 29 Sep 2021
Print article
Illustration
Illustration

A team of researchers at the National Institute of Blood Disease (Karachi, Pakistan) have created a new machine learning tool that could help healthcare workers to quickly screen and direct the flow of COVID-19 patients arriving at hospitals. The results from an evaluation of this algorithm were presented at the 2021 AACC Annual Scientific Meeting & Clinical Lab Expo.

It is important for clinicians to quickly diagnose COVID-19 patients when they arrive at hospitals, both to triage them and to separate them from other vulnerable patients who may be immunocompromised or have pre-existing medical conditions. This can be difficult, however, because COVID-19 shares many symptoms with other viral infections, and the most accurate PCR-based tests for COVID-19 can take several days to yield results.

This led the researchers to create a machine learning algorithm to help healthcare workers efficiently screen incoming COVID-19 patients. The scientists extracted routine diagnostic and demographic data from the records of 21,672 patients presenting at hospitals and applied several statistical techniques to develop this algorithm, which is a predictive model that differentiates between COVID-19 and non-COVID-19 patients. During validation experiments, the model performed with an accuracy of up to 92.5% when tested with an independent dataset and showed a negative predictive value of up to 96.9%. The latter means that the model is particularly reliable when identifying patients who don’t have COVID-19.

“The true negative labeling efficiency of our research advocates its utility as a screening test for rapid expulsion of SARS-CoV-2 from emergency departments, aiding prompt care decisions, directing patient-case flow, and fulfilling the role of a ‘pre-test’ concerning orderly RT-PCR testing where it is not handy,” said Dr. Rana Zeeshan Haider, PhD who led the study. “We propose this test to accept the challenge of critical diagnostic needs in resource constrained settings where molecular testing is not under the flag of routine testing panels.”

Related Links:
National Institute of Blood Disease 

Gold Member
Universal Transport Solution
Puritan®UniTranz-RT
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
H-FABP Assay
Heart-Type Fatty Acid-Binding Protein Assay
New
Blood Gas and Chemistry Analysis System
Edan i500

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.