We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App





Impedance Analyzer Connected to DNA Biosensor Enables Ultra-Fast and Cheap Detection of SARS-CoV-2

By LabMedica International staff writers
Posted on 17 Aug 2021
An impedance analyzer connected to DNA biosensor can be used to detect genetic sequence from SARS-CoV-2.

A multidisciplinary team of researchers affiliated with various institutions and led by the University of São Paulo’s São Carlos Institute of Physics (IFSC-USP; São Paulo, Brazil) has developed the device which has already shown to be efficient in detecting SARS-CoV-2. More...
The result of the analysis can be ready in 30 minutes, for a laboratory-scale cost of less than USD 1 per genosensor. The components of the impedance analyzer, a durable part of the device, cost less than USD 200. The device already exists at the laboratory scale, and the technology can be transferred to any company with the wherewithal to mass-produce it.

Based on nucleic acids that detect simple complementary DNA or RNA sequences, genosensors are biosensors that make possible mass testing for immediate and sensitive testing of genetic material. The device consists of a self-assembled monolayer of 11-mercaptoundecanoic acid (11-MUA) chemically bonded to glass electrodes containing micrometric gold leads or surfaces containing gold nanoparticles. This environment is able to immobilize the simple DNA or RNA strip used as a capture probe. Hybridization with the complementary strip, if it exists in the sample, is shown by means of variations in physical parameters detected by electrical or electrochemical impedance spectroscopy and localized surface plasmon resonance.

The highest sensitivity achieved in the study corresponded to 0.3 copies per microliter, sufficient to detect the DNA sequence in saliva or other body fluids. The complementary SARS-CoV-2 sequences were also diagnosed by means of machine learning techniques applied to scanning electron microscope images obtained from genosensors exposed to various different concentrations of complementary DNA sequences. In the detection experiments, the sensitivity of the genosensors was verified in control samples, including a negative sequence for SARS-CoV-2 and other DNA biomarkers unrelated to the virus. Analysis of the data obtained by a multidimensional projection technique called interactive document mapping (IDMAP) showed a clear separation between complementary DNA sequences at various concentrations and samples containing a non-complementary sequence or other DNA biomarkers unrelated to SARS-CoV-2.

“Our genosensor can immobilize a simple DNA strip used as a capture probe. Under appropriate conditions, the immobilized strip binds to a complementary DNA strip contained in the liquid sample to be analyzed. This process, called hybridization, demonstrates the presence of SARS-CoV-2 in the sample, which may be saliva or another body fluid,” said chemist Juliana Coatrini Soares who is the first author of the published article describing the research.

Related Links:
University of São Paulo’s São Carlos Institute of Physics


Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
Portable Electronic Pipette
Mini 96
ESR Analyzer
TEST1 2.0
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.